Boundary Friction for a Line Contact Model: An Empirical Approach

Article Preview

Abstract:

The paper introduces an alternative approach to predict boundary friction for rough surfaces at micros-scale through the empirical integration of asperity-like nanoscale friction measurements. The nanoscale friction is measured using an atomic force microscope (AFM) tip sliding on a steel plate, confining the test lubricant, i.e. base oil for the fully formulated SAE grade 10w40. The approach, based on the Greenwood and Tripp’s friction model, is combined with the modified Elrod’s cavitation algorithm in order to predict the friction generated by a slider-bearing test rig. The numerical simulation results, using an improved boundary friction model, showed good agreement with the measured friction data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-12

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. W. F. Chong, M. Teodorescu, and N. D. Vaughan. Cavitation induced starvation for piston ring/liner tribological conjunction. Trib. Int., Vol. 44 (2011), p.483–497.

DOI: 10.1016/j.triboint.2010.12.008

Google Scholar

[2] J. A. Greenwood and B. P. Williamson. Contact between nominally flat surfaces. Proc. Roy. Soc., Series A, Vol. 24 (1966), p.300–319.

Google Scholar

[3] J. A. Greenwood and J. H. Tripp. The contact of two nominally flat rough surfaces. Proc IMechE, Vol. 185 (1970), 625– 633.

DOI: 10.1243/pime_proc_1970_185_069_02

Google Scholar

[4] L. Kogut and I. Etsion. Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mechanics, Vol. 69 (2002), p.657–662.

DOI: 10.1115/1.1490373

Google Scholar

[5] R. L. Jackson and I. Green. A finite element study of elasto-plastic hemispherical contact against a rigid flat. Trans ASME, J. Trib., Vol. 127 (2005), p.343–354.

DOI: 10.1115/1.1866166

Google Scholar

[6] W. W. F. Chong and M. De la Cruz. Elastoplastic contact of rough surfaces: a line contact model for boundary regime of lubrication. Meccanica, Vol. 49 (2014), pp.1171-1191.

DOI: 10.1007/s11012-013-9861-1

Google Scholar

[7] M. De la Cruz, W.W.F. Chong, M. Teodorescu, S. Theodossiades, and H. Rahnejat. Transient mixed thermo- elastohydrodynamic lubrication in multi-speed transmissions. Trib. Int., Vol. 49 (2012), p.17–29.

DOI: 10.1016/j.triboint.2011.12.006

Google Scholar

[8] W.W.F. Chong, M. Teodorescu, and H. Rahnejat. Mixed thermo-elastohydrodynamic cam-tappet power loss in low-speed emission cycles. Int. J. Engine Research, Vol. 15 (2014), pp.153-164.

DOI: 10.1177/1468087412461631

Google Scholar

[9] W.W.F. Chong, S. Howell-Smith, M. Teodorescu and N.D. Vaughan. The influence of inter-ring pressures on piston-ring/liner tribological conjunction. IMechE Part J: J. Eng. Trib., Vol. 227 (2013), pp.154-167.

DOI: 10.1177/1350650112461579

Google Scholar

[10] W. W. F. Chong, M. Teodorescu, and H. Rahnejat. Effect of lubricant molecular rheology on formation and shear of ultra-thin surface films. J. Phys., D: Appl. Phys., Vol. 44 (2011), p.165302.

DOI: 10.1088/0022-3727/44/16/165302

Google Scholar

[11] H. G. Elrod. A cavitation algorithm. Journal of Lubrication Technology, Vol. 103 (1981), p.350–354.

Google Scholar

[12] C. K. Buenviaje, S. R. Ge, M. H. Rafaillovich, and R. M. Overney. Atomic force microscopy calibration methods for lateral force, elasticity and viscosity. Mat. Res. Soc. Symp. Proc., Vol. 522 (1998), p.187–192.

DOI: 10.1557/proc-522-187

Google Scholar

[13] B. J. Briscoe and D. C. B. Evans. The shear properties of langmuir-blodgett layers. Proc. Roy. Soc., Series A, Math and Phy Sci, pages 389–407, (1982).

Google Scholar