LASER Reduced Graphene on Flexible Substrate for Strain Sensing Applications: Temperature Effect on Gauge Factor

Article Preview

Abstract:

New technique is developed to synthesize graphene film on flexible substrate for strain sensing applications. A flexible graphene/Poly-ethylene Terephthalate (PET) strain sensor based on graphene piezoresistivity is produced by a new simple low cost technique. Graphene oxide film on PET substrate is reduced and patterned simultaneously using 2 Watt CO2 LASER beam. The synthesized graphene film is characterized by XRD, FT-IR, SEM, and Raman techniques. Commercial strain gauges are used to predict experimentally the gauge factor (GF) of the graphene film at different values of applied strain. The stability of the graphene film and its GF are studied at different operating temperatures. The fabricated sensor showed high GF of 78 with great linearity and stability up to 60 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim: Science Vol. 324 (2009), p.1530.

Google Scholar

[2] K.I. Bolotin, K.J. Sikes and et al.: Solid State Communications Vol. 146 (2008), p.351.

Google Scholar

[3] H. Hosseinzadega1, C. Todd, A. Lal, M. Pandey, M. Levendorf and J. Park: Graphene has ultra high piezoresistivity gauge factor (IEEE, MEMS, France 2012, p.611).

DOI: 10.1109/memsys.2012.6170262

Google Scholar

[4] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang and et al.: Science Vol. 324 (2009), p.1312.

Google Scholar

[5] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen and S.S. Pei: Applied Physics Letters Vol. 93 (2008), p.103.

Google Scholar

[6] W.S. Hummers Jr and R.E. Offeman: Journal of the American Chemical Society Vol. 80 (1958), p.1339.

Google Scholar

[7] J. Zhao, S. Pei, W. Ren, L. Gao and H. M. Cheng: Acs Nano Vol. 4 (2010), p.5245.

Google Scholar

[8] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia and et al.: Carbon Vol. 45 (2007), p.1558.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[9] H.W. Chang, Y.C. Tsai, C.W. Cheng, C.Y. Lin and P.H. Wu: Electrochemistry Communications Vol. 23 (2012), p.37.

Google Scholar

[10] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim and et al.: Nature Vol. 457 (2009), p.706.

Google Scholar

[11] C. Lee and et al.: Science Vol. 321 (2008), p.385.

Google Scholar

[12] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi and B.H. Hong: Nature Vol. 457 (2009), p.706.

Google Scholar

[13] D. Teweldebrhan and A.A. Balandin: Applied Physics Letters Vol. 94 (2009), id. 013101.

Google Scholar

[14] M. Huang and J.R. Greer: ECS Transactions Vol. 35 (2011), p.211.

Google Scholar

[15] Y. Kim and et al.: Current Applied Physics Vol. 11 (2010), p. S350.

Google Scholar

[16] Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim and et al.: Nano letters Vol. 10 (2010), p.490.

Google Scholar

[17] X. Zheng, X. Chen, J. -K. Kim, D. -W. Lee and X. Li: Journal of Micro/Nanolithography MEMS and MOEMS Vol. 12 (2013), id. 013009.

DOI: 10.1117/1.jmm.12.1.013009

Google Scholar

[18] X.W. Fu, Z.M. Liao, J.X. Zhou, Y.B. Zhou, H.C. Wu, R. Zhang and et al.: Applied Physics Letters Vol. 99 (2011), id. 213107.

Google Scholar

[19] Gamil et al.: Key Engineering Materials Vol. 605 (2014), p.207.

Google Scholar

[20] V. Strong, S. Dubin, M.F. El-Kady, A. Lech, Y. Wang, B.H. Weiller and et al.: Acs Nano Vol. 6 (2012), p.1395.

Google Scholar

[21] M. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L. Cancado, A. Jorio and R. Saito: Physical Chemistry Chemical Physics Vol. 9 (2007), p.1276.

Google Scholar

[22] Z. Ni, Y. Wang, T. Yu and Z. Shen: Nano Research Vol. 1 (2008), p.273.

Google Scholar