Foreign-Particle Reinforcement of a Zr-Cu-X BMG

Article Preview

Abstract:

The yield strength of a Zr-based bulk metallic glass was improved by up to 20% in comparison to the as-received alloy via dispersion of graphite nanoparticles into the matrix. The resulting material also had high plasticity and good elasticity and the use of reinforcement particles was found to suppress heterogeneous nucleation. The graphite nanoparticles additionally improved the alloy’s thermal stability as compared to that of the monolithic alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-257

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.S.E. Antipas, E. Statharas, P. Tserotas, N. Papadopoulos, E. Hristoforou, Experimental and First-Principles Characterization of Functionalized Magnetic Nanoparticles, ChemPhysChem, 14 (2013) 1934-(1942).

DOI: 10.1002/cphc.201300161

Google Scholar

[2] D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, The effect of film oxygen content on SnOitx gas-sensor selectivity, Sensors and Actuators: B. Chemical, 25 (1995) 883-885.

DOI: 10.1016/0925-4005(95)85194-1

Google Scholar

[3] P.D. Skafidas, D.S. Vlachos, J.N. Avaritsiotis, Modelling and simulation of tin oxide based thick-film gas sensors using Monte Carlo techniques, Sensors and Actuators: B. Chemical, 19 (1994) 724-728.

DOI: 10.1016/0925-4005(93)01222-p

Google Scholar

[4] N.D. Papadopoulos, E. Illekova, H.S. Karayanni, E. Hristoforou, Synthesis and characterization of cobalt precursors for the growth of magnetic thin films by the MOCVD method, Journal of Optoelectronics and Advanced Materials, 10 (2008) 1098-1102.

Google Scholar

[5] A.G. Mamalis, E. Hristoforou, D.E. Manolakos, T. Prikhna, I. Theodorakopoulos, G. Kouzilos, Explosively consolidated powder-in-tube MgB2 superconductor aided by post-thermal treatment, IEEE Transactions on Applied Superconductivity, 19 (2009).

DOI: 10.1109/tasc.2008.2009124

Google Scholar

[6] L. Lanotte, G. Ausanio, V. Iannotti, C. Luponio Jr, Influence of particle pre-orientation on elastomagnetic effect in a composite material of ellipsoidal Ni microparticles in a silicone matrix, Applied Physics A: Materials Science and Processing, 77 (2003).

DOI: 10.1007/s00339-002-1939-x

Google Scholar

[7] E. Hristoforou, Magnetostrictive delay lines: Engineering theory and sensing applications, Measurement Science and Technology, 14 (2003) R15-R47.

DOI: 10.1088/0957-0233/14/2/201

Google Scholar

[8] E. Hristoforou, Magnetic effects in physical sensor design and development, Journal of Optoelectronics and Advanced Materials, 4 (2002) 245-260.

Google Scholar

[9] I. Giouroudi, C. Orfanidou, E. Hristoforou, Circumferentially oriented Ni cylindrical thin films for torque sensor applications, Sensors and Actuators, A: Physical, 106 (2003) 179-182.

DOI: 10.1016/s0924-4247(03)00161-4

Google Scholar

[10] I. Giouroudi, A. Ktena, E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNi x thin films, Journal of Optoelectronics and Advanced Materials, 6 (2004) 661-666.

Google Scholar

[11] G.S.E. Antipas, E. Statharas, Surface properties of a laser-irradiated Al 6061 alloy, International Journal of Computational Materials Science and Surface Engineering, 6 (2014).

DOI: 10.1504/ijcmsse.2014.063755

Google Scholar

[12] G.S.E. Antipas, E. Mangiorou, E. Hristoforou, Solute-solvent interactions and atomic cohesion in GeSe4 and GeSe4In5 metallic glasses, Materials Research Express, 1 (2014) 015202.

DOI: 10.1088/2053-1591/1/1/015202

Google Scholar

[13] G.S.E. Antipas, E. Mangiorou, Atomic topology and electronic structure of a melt-spun Al92U8 metallic glass, Computational and Theoretical Chemistry, 1036 (2014) 16-21.

DOI: 10.1016/j.comptc.2014.03.009

Google Scholar

[14] G.S.E. Antipas, K. Karalis, The effect of annealing on the electronic stability of an amorphous Zr70Pd30 alloy, Materials Chemistry and Physics, In press (2014).

DOI: 10.1016/j.matchemphys.2014.06.063

Google Scholar

[15] G.S.E. Antipas, Surface growth and diffusion energetics of Ag monolayers on Cu (001), Metals, 4 (2014) 108-117.

DOI: 10.3390/met4020108

Google Scholar

[16] G.S.E. Antipas, A mass efficiency test of α-β processed Ti-Al-V alloys, Key Engineering Materials, 605 (2014) 605-608.

DOI: 10.4028/www.scientific.net/kem.605.605

Google Scholar

[17] K. Karalis, L. Temleitner, G.S.E. Antipas, L. Pusztai, A. Xenidis, Experimentally constrained atomic order probing of a Si-Al composite glass, Philosophical Magazine, (2013) 1-9.

DOI: 10.1080/14786435.2013.863438

Google Scholar

[18] G.S.E. Antipas, L. Temleitner, K. Karalis, S. Kohara, L. Pusztai, A. Xenidis, Atomic order and cluster energetics of a 17 w. t. % Si-based glass versus the liquid phase, Journal of Physics: Condensed Matter, 25 (2013) 1-7.

DOI: 10.1088/0953-8984/25/45/454206

Google Scholar

[19] G.S.E. Antipas, The Effect of Increasing Sn Content on High-Temperature Mechanical Deformation of an Mg-3%Cu-1%Ca Alloy, Metals, 3 (2013) 337-342.

DOI: 10.3390/met3040337

Google Scholar

[20] G.S.E. Antipas, Molecular orbital interactions in glass-forming Zr70Cu30 liquid quasicrystals, Journal of Alloys and Compounds, 578 (2013) 565-570.

DOI: 10.1016/j.jallcom.2013.06.179

Google Scholar

[21] G.S.E. Antipas, A review of gas atomization and spray forming phenomenology, Powder Metallurgy, (2013).

Google Scholar

[22] G.S.E. Antipas, L. Temleitner, K. Karalis, S. Kohara, L. Pusztai, A. Xenidis, A containerless study of short-range order in high-temperature Fe–Si–Al–Ca–Mg–Cr–Cu–Ni oxide systems, Journal of Molecular Structure, 1019 (2012) 151-158.

DOI: 10.1016/j.molstruc.2012.03.056

Google Scholar

[23] G.S.E. Antipas, Spray forming of al alloys: Experiment and theory, Materials Research, 15 (2012) 131-135.

DOI: 10.1590/s1516-14392012005000007

Google Scholar

[24] G. Antipas, Gas Atomization of Aluminium Melts: Comparison of Analytical Models, Metals, 2 (2012) 202-210.

DOI: 10.3390/met2020202

Google Scholar

[25] G.S.E. Antipas, C. Lekakou, P. Tsakiropoulos, Microstructural characterisation of Al―Hf and Al―Li―Hf spray deposits, Materials Characterization, 62 (2011) 402-408.

DOI: 10.1016/j.matchar.2011.02.001

Google Scholar

[26] G.S.E. Antipas, Liquid column deformation and particle size distribution in gas atomisation, International Journal of Computational Materials Science and Surface Engineering, 4 (2011) 247-264.

DOI: 10.1504/ijcmsse.2011.042822

Google Scholar

[27] G.S.E. Antipas, Modelling of the break up mechanism in gas atomization of liquid metals Part II. The gas flow model, Computational Materials Science, 46 (2009) 955-959.

DOI: 10.1016/j.commatsci.2009.04.046

Google Scholar

[28] G.S.E. Antipas, Modelling of the break up mechanism in gas atomization of liquid metals. Part I: The surface wave formation model, Computational Materials Science, 35 (2006) 416-422.

DOI: 10.1016/j.commatsci.2005.03.009

Google Scholar

[29] G. Antipas, C. Lekakou, P. Tsakiropoulos, The break up of melt streams by high pressure gases in spray forming, Proceedings of the Second International Conference on Spray Forming, (1993) 15-24.

Google Scholar

[30] J. Schroers, W.L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters, 93 (2004) 255506.

Google Scholar

[31] D.C. Hofmann, J. -Y. Suh, A. Wiest, G. Duan, M. -L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451 (2008) 1085-1089.

DOI: 10.1038/nature06598

Google Scholar

[32] J.J. Lewandowski *, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters, 85 (2005) 77-87.

DOI: 10.1080/09500830500080474

Google Scholar

[33] C.C. Hays, C.P. Kim, W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions, Physical Review Letters, 84 (2000) 2901-2904.

DOI: 10.1103/physrevlett.84.2901

Google Scholar

[34] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Work-Hardenable, Ductile Bulk Metallic Glass, Physical Review Letters, 94 (2005) 205501.

DOI: 10.1103/physrevlett.94.205501

Google Scholar

[35] M.E. Siegrist, J.F. Löffler, Bulk metallic glass–graphite composites, Scripta Materialia, 56 (2007) 1079-1082.

DOI: 10.1016/j.scriptamat.2007.02.022

Google Scholar

[36] A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, K. Hono, In situ formed two-phase metallic glass with surface fractal microstructure, Acta Materialia, 52 (2004) 2441-2448.

DOI: 10.1016/j.actamat.2004.01.036

Google Scholar

[37] Y. Xu, J. Xu, Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites, Scripta Materialia, 49 (2003) 843-848.

DOI: 10.1016/s1359-6462(03)00447-0

Google Scholar

[38] J. Das, A. Güth, H. -J. Klauß, C. Mickel, W. Löser, J. Eckert, S. Roy, L. Schultz, High-strength Zr73. 5Nb9Cu7NiAl9. 5 in situ composites, Scripta Materialia, 49 (2003) 1189-1195.

DOI: 10.1016/j.scriptamat.2003.08.015

Google Scholar