[1]
G.S.E. Antipas, E. Statharas, P. Tserotas, N. Papadopoulos, E. Hristoforou, Experimental and First-Principles Characterization of Functionalized Magnetic Nanoparticles, ChemPhysChem, 14 (2013) 1934-(1942).
DOI: 10.1002/cphc.201300161
Google Scholar
[2]
D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, The effect of film oxygen content on SnOitx gas-sensor selectivity, Sensors and Actuators: B. Chemical, 25 (1995) 883-885.
DOI: 10.1016/0925-4005(95)85194-1
Google Scholar
[3]
P.D. Skafidas, D.S. Vlachos, J.N. Avaritsiotis, Modelling and simulation of tin oxide based thick-film gas sensors using Monte Carlo techniques, Sensors and Actuators: B. Chemical, 19 (1994) 724-728.
DOI: 10.1016/0925-4005(93)01222-p
Google Scholar
[4]
N.D. Papadopoulos, E. Illekova, H.S. Karayanni, E. Hristoforou, Synthesis and characterization of cobalt precursors for the growth of magnetic thin films by the MOCVD method, Journal of Optoelectronics and Advanced Materials, 10 (2008) 1098-1102.
Google Scholar
[5]
A.G. Mamalis, E. Hristoforou, D.E. Manolakos, T. Prikhna, I. Theodorakopoulos, G. Kouzilos, Explosively consolidated powder-in-tube MgB2 superconductor aided by post-thermal treatment, IEEE Transactions on Applied Superconductivity, 19 (2009).
DOI: 10.1109/tasc.2008.2009124
Google Scholar
[6]
L. Lanotte, G. Ausanio, V. Iannotti, C. Luponio Jr, Influence of particle pre-orientation on elastomagnetic effect in a composite material of ellipsoidal Ni microparticles in a silicone matrix, Applied Physics A: Materials Science and Processing, 77 (2003).
DOI: 10.1007/s00339-002-1939-x
Google Scholar
[7]
E. Hristoforou, Magnetostrictive delay lines: Engineering theory and sensing applications, Measurement Science and Technology, 14 (2003) R15-R47.
DOI: 10.1088/0957-0233/14/2/201
Google Scholar
[8]
E. Hristoforou, Magnetic effects in physical sensor design and development, Journal of Optoelectronics and Advanced Materials, 4 (2002) 245-260.
Google Scholar
[9]
I. Giouroudi, C. Orfanidou, E. Hristoforou, Circumferentially oriented Ni cylindrical thin films for torque sensor applications, Sensors and Actuators, A: Physical, 106 (2003) 179-182.
DOI: 10.1016/s0924-4247(03)00161-4
Google Scholar
[10]
I. Giouroudi, A. Ktena, E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNi x thin films, Journal of Optoelectronics and Advanced Materials, 6 (2004) 661-666.
Google Scholar
[11]
G.S.E. Antipas, E. Statharas, Surface properties of a laser-irradiated Al 6061 alloy, International Journal of Computational Materials Science and Surface Engineering, 6 (2014).
DOI: 10.1504/ijcmsse.2014.063755
Google Scholar
[12]
G.S.E. Antipas, E. Mangiorou, E. Hristoforou, Solute-solvent interactions and atomic cohesion in GeSe4 and GeSe4In5 metallic glasses, Materials Research Express, 1 (2014) 015202.
DOI: 10.1088/2053-1591/1/1/015202
Google Scholar
[13]
G.S.E. Antipas, E. Mangiorou, Atomic topology and electronic structure of a melt-spun Al92U8 metallic glass, Computational and Theoretical Chemistry, 1036 (2014) 16-21.
DOI: 10.1016/j.comptc.2014.03.009
Google Scholar
[14]
G.S.E. Antipas, K. Karalis, The effect of annealing on the electronic stability of an amorphous Zr70Pd30 alloy, Materials Chemistry and Physics, In press (2014).
DOI: 10.1016/j.matchemphys.2014.06.063
Google Scholar
[15]
G.S.E. Antipas, Surface growth and diffusion energetics of Ag monolayers on Cu (001), Metals, 4 (2014) 108-117.
DOI: 10.3390/met4020108
Google Scholar
[16]
G.S.E. Antipas, A mass efficiency test of α-β processed Ti-Al-V alloys, Key Engineering Materials, 605 (2014) 605-608.
DOI: 10.4028/www.scientific.net/kem.605.605
Google Scholar
[17]
K. Karalis, L. Temleitner, G.S.E. Antipas, L. Pusztai, A. Xenidis, Experimentally constrained atomic order probing of a Si-Al composite glass, Philosophical Magazine, (2013) 1-9.
DOI: 10.1080/14786435.2013.863438
Google Scholar
[18]
G.S.E. Antipas, L. Temleitner, K. Karalis, S. Kohara, L. Pusztai, A. Xenidis, Atomic order and cluster energetics of a 17 w. t. % Si-based glass versus the liquid phase, Journal of Physics: Condensed Matter, 25 (2013) 1-7.
DOI: 10.1088/0953-8984/25/45/454206
Google Scholar
[19]
G.S.E. Antipas, The Effect of Increasing Sn Content on High-Temperature Mechanical Deformation of an Mg-3%Cu-1%Ca Alloy, Metals, 3 (2013) 337-342.
DOI: 10.3390/met3040337
Google Scholar
[20]
G.S.E. Antipas, Molecular orbital interactions in glass-forming Zr70Cu30 liquid quasicrystals, Journal of Alloys and Compounds, 578 (2013) 565-570.
DOI: 10.1016/j.jallcom.2013.06.179
Google Scholar
[21]
G.S.E. Antipas, A review of gas atomization and spray forming phenomenology, Powder Metallurgy, (2013).
Google Scholar
[22]
G.S.E. Antipas, L. Temleitner, K. Karalis, S. Kohara, L. Pusztai, A. Xenidis, A containerless study of short-range order in high-temperature Fe–Si–Al–Ca–Mg–Cr–Cu–Ni oxide systems, Journal of Molecular Structure, 1019 (2012) 151-158.
DOI: 10.1016/j.molstruc.2012.03.056
Google Scholar
[23]
G.S.E. Antipas, Spray forming of al alloys: Experiment and theory, Materials Research, 15 (2012) 131-135.
DOI: 10.1590/s1516-14392012005000007
Google Scholar
[24]
G. Antipas, Gas Atomization of Aluminium Melts: Comparison of Analytical Models, Metals, 2 (2012) 202-210.
DOI: 10.3390/met2020202
Google Scholar
[25]
G.S.E. Antipas, C. Lekakou, P. Tsakiropoulos, Microstructural characterisation of Al―Hf and Al―Li―Hf spray deposits, Materials Characterization, 62 (2011) 402-408.
DOI: 10.1016/j.matchar.2011.02.001
Google Scholar
[26]
G.S.E. Antipas, Liquid column deformation and particle size distribution in gas atomisation, International Journal of Computational Materials Science and Surface Engineering, 4 (2011) 247-264.
DOI: 10.1504/ijcmsse.2011.042822
Google Scholar
[27]
G.S.E. Antipas, Modelling of the break up mechanism in gas atomization of liquid metals Part II. The gas flow model, Computational Materials Science, 46 (2009) 955-959.
DOI: 10.1016/j.commatsci.2009.04.046
Google Scholar
[28]
G.S.E. Antipas, Modelling of the break up mechanism in gas atomization of liquid metals. Part I: The surface wave formation model, Computational Materials Science, 35 (2006) 416-422.
DOI: 10.1016/j.commatsci.2005.03.009
Google Scholar
[29]
G. Antipas, C. Lekakou, P. Tsakiropoulos, The break up of melt streams by high pressure gases in spray forming, Proceedings of the Second International Conference on Spray Forming, (1993) 15-24.
Google Scholar
[30]
J. Schroers, W.L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters, 93 (2004) 255506.
Google Scholar
[31]
D.C. Hofmann, J. -Y. Suh, A. Wiest, G. Duan, M. -L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451 (2008) 1085-1089.
DOI: 10.1038/nature06598
Google Scholar
[32]
J.J. Lewandowski *, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters, 85 (2005) 77-87.
DOI: 10.1080/09500830500080474
Google Scholar
[33]
C.C. Hays, C.P. Kim, W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions, Physical Review Letters, 84 (2000) 2901-2904.
DOI: 10.1103/physrevlett.84.2901
Google Scholar
[34]
J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Work-Hardenable, Ductile Bulk Metallic Glass, Physical Review Letters, 94 (2005) 205501.
DOI: 10.1103/physrevlett.94.205501
Google Scholar
[35]
M.E. Siegrist, J.F. Löffler, Bulk metallic glass–graphite composites, Scripta Materialia, 56 (2007) 1079-1082.
DOI: 10.1016/j.scriptamat.2007.02.022
Google Scholar
[36]
A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, K. Hono, In situ formed two-phase metallic glass with surface fractal microstructure, Acta Materialia, 52 (2004) 2441-2448.
DOI: 10.1016/j.actamat.2004.01.036
Google Scholar
[37]
Y. Xu, J. Xu, Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites, Scripta Materialia, 49 (2003) 843-848.
DOI: 10.1016/s1359-6462(03)00447-0
Google Scholar
[38]
J. Das, A. Güth, H. -J. Klauß, C. Mickel, W. Löser, J. Eckert, S. Roy, L. Schultz, High-strength Zr73. 5Nb9Cu7NiAl9. 5 in situ composites, Scripta Materialia, 49 (2003) 1189-1195.
DOI: 10.1016/j.scriptamat.2003.08.015
Google Scholar