[1]
G.S.E. Antipas, E. Statharas, P. Tserotas, N. Papadopoulos, E. Hristoforou, Experimental and First-Principles Characterization of Functionalized Magnetic Nanoparticles, ChemPhysChem, 14 (2013) 1934-(1942).
DOI: 10.1002/cphc.201300161
Google Scholar
[2]
D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, The effect of film oxygen content on SnOitx gas-sensor selectivity, Sensors and Actuators: B. Chemical, 25 (1995) 883-885.
DOI: 10.1016/0925-4005(95)85194-1
Google Scholar
[3]
P.D. Skafidas, D.S. Vlachos, J.N. Avaritsiotis, Modelling and simulation of tin oxide based thick-film gas sensors using Monte Carlo techniques, Sensors and Actuators: B. Chemical, 19 (1994) 724-728.
DOI: 10.1016/0925-4005(93)01222-p
Google Scholar
[4]
N.D. Papadopoulos, E. Illekova, H.S. Karayanni, E. Hristoforou, Synthesis and characterization of cobalt precursors for the growth of magnetic thin films by the MOCVD method, Journal of Optoelectronics and Advanced Materials, 10 (2008) 1098-1102.
Google Scholar
[5]
A.G. Mamalis, E. Hristoforou, D.E. Manolakos, T. Prikhna, I. Theodorakopoulos, G. Kouzilos, Explosively consolidated powder-in-tube MgB2 superconductor aided by post-thermal treatment, IEEE Transactions on Applied Superconductivity, 19 (2009).
DOI: 10.1109/tasc.2008.2009124
Google Scholar
[6]
L. Lanotte, G. Ausanio, V. Iannotti, C. Luponio Jr, Influence of particle pre-orientation on elastomagnetic effect in a composite material of ellipsoidal Ni microparticles in a silicone matrix, Applied Physics A: Materials Science and Processing, 77 (2003).
DOI: 10.1007/s00339-002-1939-x
Google Scholar
[7]
E. Hristoforou, Magnetostrictive delay lines: Engineering theory and sensing applications, Measurement Science and Technology, 14 (2003) R15-R47.
DOI: 10.1088/0957-0233/14/2/201
Google Scholar
[8]
E. Hristoforou, Magnetic effects in physical sensor design and development, Journal of Optoelectronics and Advanced Materials, 4 (2002) 245-260.
Google Scholar
[9]
I. Giouroudi, C. Orfanidou, E. Hristoforou, Circumferentially oriented Ni cylindrical thin films for torque sensor applications, Sensors and Actuators, A: Physical, 106 (2003) 179-182.
DOI: 10.1016/s0924-4247(03)00161-4
Google Scholar
[10]
I. Giouroudi, A. Ktena, E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNi x thin films, Journal of Optoelectronics and Advanced Materials, 6 (2004) 661-666.
Google Scholar
[11]
C.C. Hays, C.P. Kim, W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions, Physical Review Letters, 84 (2000) 2901-2904.
DOI: 10.1103/physrevlett.84.2901
Google Scholar
[12]
J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Work-Hardenable, Ductile Bulk Metallic Glass, Physical Review Letters, 94 (2005) 205501.
DOI: 10.1103/physrevlett.94.205501
Google Scholar
[13]
J. Schroers, W.L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters, 93 (2004) 255506.
Google Scholar
[14]
D.C. Hofmann, J. -Y. Suh, A. Wiest, G. Duan, M. -L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451 (2008) 1085-1089.
DOI: 10.1038/nature06598
Google Scholar
[15]
J.J. Lewandowski *, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters, 85 (2005) 77-87.
DOI: 10.1080/09500830500080474
Google Scholar
[16]
M.E. Siegrist, J.F. Löffler, Bulk metallic glass–graphite composites, Scripta Materialia, 56 (2007) 1079-1082.
DOI: 10.1016/j.scriptamat.2007.02.022
Google Scholar
[17]
A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, K. Hono, In situ formed two-phase metallic glass with surface fractal microstructure, Acta Materialia, 52 (2004) 2441-2448.
DOI: 10.1016/j.actamat.2004.01.036
Google Scholar