Graphite Dispersoids Enhance the Tribology of a Non-Ferrous Bulk Metallic Glass

Article Preview

Abstract:

The tribological properties of a Zr-based bulk metallic glass were improved via dispersion of graphite particles into the alloy matrix. It was observed that both graphite and carbide particle dispersion led to a significant decrease of the coefficient of friction, at least two times lower compared to the original bulk metallic glass. The increased merit of such enhanced tribological properties lies in their combination with the particle-reinforced material high yield strength. We determined that graphite and, especially, carbide dispersion lead to a significant decrease of the material’s coefficient of friction (COF).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-253

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.S.E. Antipas, E. Statharas, P. Tserotas, N. Papadopoulos, E. Hristoforou, Experimental and First-Principles Characterization of Functionalized Magnetic Nanoparticles, ChemPhysChem, 14 (2013) 1934-(1942).

DOI: 10.1002/cphc.201300161

Google Scholar

[2] D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, The effect of film oxygen content on SnOitx gas-sensor selectivity, Sensors and Actuators: B. Chemical, 25 (1995) 883-885.

DOI: 10.1016/0925-4005(95)85194-1

Google Scholar

[3] P.D. Skafidas, D.S. Vlachos, J.N. Avaritsiotis, Modelling and simulation of tin oxide based thick-film gas sensors using Monte Carlo techniques, Sensors and Actuators: B. Chemical, 19 (1994) 724-728.

DOI: 10.1016/0925-4005(93)01222-p

Google Scholar

[4] N.D. Papadopoulos, E. Illekova, H.S. Karayanni, E. Hristoforou, Synthesis and characterization of cobalt precursors for the growth of magnetic thin films by the MOCVD method, Journal of Optoelectronics and Advanced Materials, 10 (2008) 1098-1102.

Google Scholar

[5] A.G. Mamalis, E. Hristoforou, D.E. Manolakos, T. Prikhna, I. Theodorakopoulos, G. Kouzilos, Explosively consolidated powder-in-tube MgB2 superconductor aided by post-thermal treatment, IEEE Transactions on Applied Superconductivity, 19 (2009).

DOI: 10.1109/tasc.2008.2009124

Google Scholar

[6] L. Lanotte, G. Ausanio, V. Iannotti, C. Luponio Jr, Influence of particle pre-orientation on elastomagnetic effect in a composite material of ellipsoidal Ni microparticles in a silicone matrix, Applied Physics A: Materials Science and Processing, 77 (2003).

DOI: 10.1007/s00339-002-1939-x

Google Scholar

[7] E. Hristoforou, Magnetostrictive delay lines: Engineering theory and sensing applications, Measurement Science and Technology, 14 (2003) R15-R47.

DOI: 10.1088/0957-0233/14/2/201

Google Scholar

[8] E. Hristoforou, Magnetic effects in physical sensor design and development, Journal of Optoelectronics and Advanced Materials, 4 (2002) 245-260.

Google Scholar

[9] I. Giouroudi, C. Orfanidou, E. Hristoforou, Circumferentially oriented Ni cylindrical thin films for torque sensor applications, Sensors and Actuators, A: Physical, 106 (2003) 179-182.

DOI: 10.1016/s0924-4247(03)00161-4

Google Scholar

[10] I. Giouroudi, A. Ktena, E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNi x thin films, Journal of Optoelectronics and Advanced Materials, 6 (2004) 661-666.

Google Scholar

[11] C.C. Hays, C.P. Kim, W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions, Physical Review Letters, 84 (2000) 2901-2904.

DOI: 10.1103/physrevlett.84.2901

Google Scholar

[12] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Work-Hardenable, Ductile Bulk Metallic Glass, Physical Review Letters, 94 (2005) 205501.

DOI: 10.1103/physrevlett.94.205501

Google Scholar

[13] J. Schroers, W.L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters, 93 (2004) 255506.

Google Scholar

[14] D.C. Hofmann, J. -Y. Suh, A. Wiest, G. Duan, M. -L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451 (2008) 1085-1089.

DOI: 10.1038/nature06598

Google Scholar

[15] J.J. Lewandowski *, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters, 85 (2005) 77-87.

DOI: 10.1080/09500830500080474

Google Scholar

[16] M.E. Siegrist, J.F. Löffler, Bulk metallic glass–graphite composites, Scripta Materialia, 56 (2007) 1079-1082.

DOI: 10.1016/j.scriptamat.2007.02.022

Google Scholar

[17] A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, K. Hono, In situ formed two-phase metallic glass with surface fractal microstructure, Acta Materialia, 52 (2004) 2441-2448.

DOI: 10.1016/j.actamat.2004.01.036

Google Scholar