[1]
Baughman, R.H.; Zakhidov, A. A.; de Heer, W.A. Carbon nanotubes-The route toward applications. Sci. 2002, 297 (5582) 787−792.
DOI: 10.1126/science.1060928
Google Scholar
[2]
Mauter, M. S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. 2008, 42 (16) 5843−5859.
DOI: 10.1021/es8006904
Google Scholar
[3]
Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: behavior, late, bioavailability and effects, Sci. 2008, 27(9) 1825-1851.
DOI: 10.1897/08-090.1
Google Scholar
[4]
Jaisi, D. P.; Elimelech, M. Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ. Sci. Technol. 2009, 43 (24) 9161-9166.
DOI: 10.1021/es901927y
Google Scholar
[5]
Saleh, N. B.; Pfefferle, L. D.; Elimelech, M. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 2010, 44 (7) 2412−2418.
DOI: 10.1021/es903059t
Google Scholar
[6]
Liu, X.; O'Carroll, D. M.; Petersen, E. J.; Huang, Q.; Anderson, C. L. Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol. 2009, 43 (21) 8153−8158.
DOI: 10.1021/es901340d
Google Scholar
[7]
Chiu-Wing Lam, John T. James, Richard McCluskey, Robert L. Hunter, Pulmonary Toxicity of Single-Walled Carbon Nanotubes in Mice 7 and 90Days after intratracheal instillation, Toxicological Sciences. 2004, 77(1) 126-134.
DOI: 10.1093/toxsci/kfg243
Google Scholar
[8]
Xiaoshan Zhu, Lin Zhu. Three kinds of the toxic effects of carbon nanomaterials on aquatic organisms. China Environmental Science. 2008, 28(3) 269−273.
Google Scholar
[9]
Hyung H. Fortner J.D.; Hughes J.B. Natural organic matter stabilizes carbon nanotubes in the aqueous phase, Science. 2007, 41(1) 179-184.
DOI: 10.1021/es061817g
Google Scholar
[10]
Roberts, A.P.; Mount, A.S.; Seda, B, et al. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna, Sci. 2007, 41(8) 3025-3029.
DOI: 10.1021/es062572a
Google Scholar
[11]
Fabienne Schwab. Thomas D. Bucheli, Lungile P. Lukhele et al. Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration, Sci. 2011, 45(14) 6136-6144.
DOI: 10.1021/es200506b
Google Scholar
[12]
Pumera, M. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir. 2007, 23 (11) 6453−6458.
DOI: 10.1021/la070088v
Google Scholar
[13]
Zhifeng Long, Jing Ji. Systematic and Quantitative Investigation of the Mechanism of Carbon Nanotubes' Toxicity toward Algae. Environ. Sci. Technol. 2012, 46(15) 8458−8466.
DOI: 10.1021/es301802g
Google Scholar
[14]
Sivaram Arepalli. Chiu-wing Lam, John T. James, and Robert L. Hunter, A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Critical Reviews in Toxicology2006, 36, 189-217.
DOI: 10.1080/10408440600570233
Google Scholar
[15]
Devrah A. Arndt, Maika Moua. Core Structure and Surface Functionalization of Carbon Nanomaterials Alter Impacts to Daphnid Mortality, Reproduction, and Growth: Acute Assays Do Not Predict Chronic Exposure ImpactsEnviron. Sci. Technol. 2013, 47, 9444−9452.
DOI: 10.1021/es4030595
Google Scholar
[16]
Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006, 311(5761) 622-627.
DOI: 10.1126/science.1114397
Google Scholar
[17]
Xiaowei Ma , Li-Hua Zhang . Single-Walled Carbon Nanotubes Alter Cytochrome c Electron Transfer and Modulate Mitochondrial Function, Sci. 2012, 6(12) 10486–10496.
DOI: 10.1021/nn302457v
Google Scholar