[1]
Smolka G, Gillner A, Bosse L, Lützeler R (2004) Micro electron beam welding and laser machining—potentials of beam welding methods in the micro-system technology. Microsyst Technol 10: 187–192.
DOI: 10.1007/s00542-003-0347-2
Google Scholar
[2]
Wilden, J.; Bergmann, J. -P.; Holtz, R.; Richter, K.; Le Guin, A.: Einsatz von gepulsten Nd: YAG-Lasern für das Fügen von Werkstoffen und Werkstoffkombinationen mit anspruchsvollen Eigenschaften, DVS-Berichte Band 244 (Die Verbindungsspezialisten – Große Schweißtechnische Tagung, CD Band) (2007).
Google Scholar
[3]
Neugebauer R, Bouzakis K-D, Denkena B, Klocke F, Sterzing A, Tekkaya AE, Wertheim R (2011) Velocity effects in metal forming and machining processes. CIRP Ann Manuf Technol 60(2): 627–650.
DOI: 10.1016/j.cirp.2011.05.001
Google Scholar
[4]
Zhang Y, Babu S, Daehn GS (2010) Impact welding in a variety of geometric configurations. In: 4th international conference on high speed forming, p.97–107.
Google Scholar
[5]
Patent (USA) (2011) Low-Temperature Spot Impact Welding Driven Without Contact, Pub. Nr. US 2011/0000953 A1.
Google Scholar
[6]
Zhang, Y., Suresh Babub, S., Prothec, C., Blakelyd, M., Kwasegroche, J., LaHae, M., Daehn, G.S. (2011) Application of high velocity impact welding at varied different length scales, Journal of Materials Processing Technology 211, pp.944-952.
DOI: 10.1016/j.jmatprotec.2010.01.001
Google Scholar
[7]
Veenaas, S., Wielage, H., Vollertsen, F. (2013) Joining by laser shock forming: realization and acting pressures, Production Engineering - Research and Development (WGP), DOI 10. 1007/s11740-013-0521-z.
DOI: 10.1007/s11740-013-0521-z
Google Scholar
[8]
Barchukov, A. I., Bunkin, F. V., Konov, V. I., Lyubin, A. A. (1974) Investigation of low-threshold gas breakdown near solid targets by CO2 laser radiation, Sov. Phys. -JETP, 39-3, pp.469-477.
Google Scholar
[9]
Demtröder, W. (2010) Atoms, molecules and photons an introduction to atomic-, molecular-, and quantum-physics, Springer; 2nd ed., p.37.
Google Scholar
[10]
Miziolek, A. W., Palleschi, V., Schechter, I. (2006) Laser Induced Breakdown Spectroscopy, 1st ed., Cambridge University Press, Cambridge.
Google Scholar
[11]
O'Keefe, J.D., Skeen, C.H., York, C.M. (1973) Laser-induced deformation modes in thin metal targets, J. of App. Phys., 44-10, pp.4622-4626.
DOI: 10.1063/1.1662012
Google Scholar
[12]
Walter, D., Michalowski, A., Gauch, R., Dausinger, F. (2007).
Google Scholar
[13]
Vollertsen, F., Schulze Niehoff, H., Wielage, H. (2009) On the acting pressure in laser deep drawing, Production Engineering - Research and Development, 3/1, pp.1-8.
DOI: 10.1007/s11740-008-0135-z
Google Scholar
[14]
Zhang, W., Yao, Y.L., Noyan, I.C. (2004) Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation, ASME, Vol. 126, pp.10-17.
DOI: 10.1115/1.1645878
Google Scholar
[15]
Wielage, H., Schulze Niehoff, H., Vollertsen, F. (2008).
Google Scholar
[16]
Veenaas, S., Vollertsen, F. (2014) High Speed Joining by Laser Shock Forming, Advanced Materials Research Vols. 966-967 (2014) pp.597-606 Trans Tech Publications, Switzerland.
DOI: 10.4028/www.scientific.net/amr.966-967.597
Google Scholar
[17]
Wielage, H., Vollertsen, F. (2012).
Google Scholar