Thermoforming Modelling and Simulation of Multilayer Composites with Continuous Fibre and Thermoplastic Matrix

Article Preview

Abstract:

CFRTP prepreg laminates thermoforming (Continuous Fibre Reinforcements and Thermoplastic Resin) is a fast composite manufacturing process. Furthermore the thermoplastic matrix is favourable to recycling. The development of a thermoforming process is complex and expensive to achieve by trial/error. A simulation approach for thermoforming prepregs thermoplastic is presented. This model is based on a continuous approach. A hyperelastic behaviour is associated with dry reinforcements. The hyperelastic potential is built from the contribution of three principal deformation modes that are supposed to be independent. A nonlinear viscoelastic model based on the generalization of simple rheological models is associated with the in-plane shear mode. The finite element simulation of a thermoforming example using this model is presented.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

387-392

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Advani SG: Flow and rheology in polymeric composites manufacturing. Amsterdam: Elsevier; (1994).

Google Scholar

[2] Rudd CD, Long AC. Liquid Molding Technologies. Cambridge: Woodhead Pub. Lim.; (1997).

Google Scholar

[3] De Luca P, Pickett AK. Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Compos Part A 1998; 29: 101-10.

DOI: 10.1016/s1359-835x(97)00060-2

Google Scholar

[4] Hsiao SW, Kikuchi N. Numerical analysis and optimal design of composite thermoforming process. Comput Method Appl Mech 1999; 177: 1-34.

Google Scholar

[5] Pickett AK, Cunningham JE, De Luca P, et al. Numerical techniques for the pre-heating and forming simulation of continuous fibre reinforced thermoplastics. In: SAMPE european conference and exhibition, Basel. May 25-30, (1996).

Google Scholar

[6] Willems A, Lomov SV, Verpoest I, Vandepitte D, Harrison P, Yu WR. Forming simulation of a thermoplastic commingled woven textile on a double dome. Int J Mater Form 2008; Suppl 1: 965-68.

DOI: 10.1007/s12289-008-0218-6

Google Scholar

[7] ten Thije RHW, Akkerman R. A multi-layer triangular membrane finite element for the forming simulation of laminated composites. Compos Part A 2009; 40: 739-53.

DOI: 10.1016/j.compositesa.2009.03.004

Google Scholar

[8] Hamila N, Boisse P, Sabourin F, Brunet M. A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 2009; 79: 1443-66.

DOI: 10.1002/nme.2625

Google Scholar

[9] Boisse P, Hamila N, Vidal-Sallé E, Dumont F. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 2011; 71(5): 683-92.

DOI: 10.1016/j.compscitech.2011.01.011

Google Scholar

[10] Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D, Vidal-Salle E. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos Part A 2009; 40: 739-53.

DOI: 10.1016/j.compositesa.2011.02.001

Google Scholar

[11] Kawabata S, Niwa M, Kawai H. The Finite Deformation Theory of Plain Weave Fabrics Part I: The Biaxial Deformation Theory. J Text Inst 1973; 64(1): 21-46.

DOI: 10.1080/00405007308630416

Google Scholar

[12] Buet-Gautier K, Boisse P. Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Exp Mech 2001; 41(3): 260-69.

DOI: 10.1007/bf02323143

Google Scholar

[13] Carvelli V, Corazza C, Poggi C. Mechanical modelling of monofilament technical textiles. Comput Mater Sci 2008; 42: 679-91.

DOI: 10.1016/j.commatsci.2007.10.003

Google Scholar

[14] Willems A, Lomov SV, Verpoest I, Vandepitte D. Optical strain fields in shear and tensile testing of textile reinforcements. Compos Sci Technol 2008; 68: 807-19.

DOI: 10.1016/j.compscitech.2007.08.018

Google Scholar

[15] Prodromou AG, Chen J. On the relationship between shear angle and wrinkling of textile composite performs. Compos Part A 1997; 28A: 491-503.

DOI: 10.1016/s1359-835x(96)00150-9

Google Scholar

[16] Potter K. Bias extension measurements on cross-plied unidirectional prepreg. Compos Part A 2002; 33: 63-73.

DOI: 10.1016/s1359-835x(01)00057-4

Google Scholar

[17] Cao J, Akkerman R, Boisse P, Chen J, et al. Characterization of Mechanical Behavior of Woven Fabrics: Experimental Methods and Benchmark Results. Compos Part A 2008; 39: 1037-53.

Google Scholar

[18] Wang P, Hamila N, Pineau P, Boisse P. Thermo-mechanical analysis of thermoplastic composite prepregs using bias-extension test. J Thermo Compos Mate, DOI: 10. 1177/0892705712454289, (2012).

DOI: 10.1177/0892705712454289

Google Scholar

[19] Kawabata S. The Standardization and Analysis of Hand Evaluation. Osaka: The Textile Machinery Society of Japan; (1986).

Google Scholar

[20] Lahey TJ, Heppler GR. Mechanical Modeling of Fabrics in Bending. ASME J Appl Mech 2004; 71: 32-40.

Google Scholar

[21] de Bilbao E, Soulat D, Hivet G, Gasser A. Experimental Study of Bending Behaviour of Reinforcements. Exp Mech 2010; 50: 333-51.

DOI: 10.1007/s11340-009-9234-9

Google Scholar

[22] Durville D. Modélisation par éléments finis des propriétés mécaniques des structures textiles. Europ J Comput Mech 2002; 11 (2-3-4): 463-477.

DOI: 10.3166/reef.11.463-477

Google Scholar

[23] P. Boisse, Y. Aimène, A. Dogui, S. Dridi, S. Gatouillat, N. Hamila, M.A. Khan, T. Mabrouki, F. Morestin, E. Vidal-Sallé, Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming, Int J Mater Forming, 3, (2010).

DOI: 10.1007/s12289-009-0664-9

Google Scholar

[24] Creech G, Pickett AK (2006) Meso-modelling of Non-Crimp Fabric composites for coupled drape and failure analysis. Journal of Materials Science 41: 6725-6736.

DOI: 10.1007/s10853-006-0213-6

Google Scholar

[25] Carpenter Nicholas J, Taylor Robert L, Katona Michael G. Lagrange constraints for transient finite element surface contact. Inter J Numer Methods Eng 1991; 32: 103-128.

DOI: 10.1002/nme.1620320107

Google Scholar

[26] ten Thije RHW, Akkerman R, Ubbink M, Van der Meer L. A lubrication approach to friction in thermoplastic composites forming processes. Compos Part A 2011; 42: 950-960.

DOI: 10.1016/j.compositesa.2011.03.023

Google Scholar

[27] ten Thije RHW, Akkerman R, Van der Meer L, Ubbink MP. Tool-ply friction in thermoplastic composite forming. Int J Mater Form 2008; Suppl 1: 953-956.

DOI: 10.1007/s12289-008-0215-9

Google Scholar