[1]
Soutis, C. Carbon fiber reinforced plastics in aircraft construction. Material Science and Engineering, 1–2, p.171–176 (2005).
DOI: 10.1016/j.msea.2005.08.064
Google Scholar
[2]
Lässig, R.; Eisenhut, M.; Mathias, A.; Schulte, R.T.; Peters, F.; Kühmann, T.; Waldmann, T.; Begemann, W. Serienproduktion von hochfesten Faserverbundbauteilen. Perspektiven für den deutschen Maschinen-und Anlagenbau, Studie Roland Berger (2012).
Google Scholar
[3]
Kendall, K.N.; Rudd, C.D.; Owen, M.J.; Middleton, V. Characterization of the resin transfer moulding process. Composites Manufacturing, 4, p.235–249 (1992).
DOI: 10.1016/0956-7143(92)90111-7
Google Scholar
[4]
Bickerton, S.; Advani, S.G. Characterization and modeling of race-tracking in liquidcomposite molding processes. Composites Science and Technology, 15, p.2215–2229 (1999).
DOI: 10.1016/s0266-3538(99)00077-9
Google Scholar
[5]
Rieber, G.; Jiang, J.; Deter, C.; Chen, N.; Mitschang, P. Influence of textile parameters on the in-plane Permeability. Composites Part A: Applied Science and Manufacturing, 0, p.89–98 (2013).
DOI: 10.1016/j.compositesa.2013.05.009
Google Scholar
[6]
C. Kissinger, Ganzheitliche Betrachtung der Harzinjektionstechnik: Messsystem zur durchgängigen Fertigungskontrolle, Hrsg. A.K. Schlarb, Kaiserslautern, Germany (2001).
Google Scholar
[7]
Verleye, B.; Croce, R.; Griebel, M.; Klitz, M.; Lomov, S.V.; Morren, G.; Sol, H.; Verpoest, I.; Roose, D. Permeability of textile reinforcements: Simulation, influence of shear and validation. Composites Science and Technology, 13, p.2804–2810 (2008).
DOI: 10.1016/j.compscitech.2008.06.010
Google Scholar
[8]
Liu, X. -L. Isothermal flow simulation of liquid composite molding. Composites Part A: Applied Science and Manufacturing, 12, p.1295–1302 (2000).
DOI: 10.1016/s1359-835x(00)00007-5
Google Scholar
[9]
Grujicic, M.; Chittajallu, K.M.; Walsh, S. Non-isothermal preform infiltration during the vacuum-assisted resin transfer molding (VARTM) process. Applied Surface Science, 1–4, p.51–64 (2005).
DOI: 10.1016/j.apsusc.2004.09.123
Google Scholar
[10]
Henry Darcy: Les fontaines publiques de la ville de Dijon. Victor Dalmont. Paris (1856).
Google Scholar
[11]
Adams, K.L.; Rebenfeld, L. In-plane flow of fluids in fabrics: Structure/Flow characterization. Textile Research Journal, 11, p.647–654 (1987).
DOI: 10.1177/004051758705701104
Google Scholar
[12]
Adams, K.L.; Russel, W.B.; Rebenfeld, L. Radial penetration of a viscous liquid into a planar anisotropic porous medium. International Journal of Multiphase Flow, 2, p.203–215 (1988).
DOI: 10.1016/0301-9322(88)90006-7
Google Scholar
[13]
Chan A. W.; Hwang S. -T. Anisotropic in plane permeability of fabric media. Polymer Engineering and Sciene, 31, p.1233–1239 (1991).
DOI: 10.1002/pen.760311613
Google Scholar
[14]
Nedanov, P.B.; Advani, S.G. A method to determine 3D permeability of fibrous reinforcements. Journal of Composite Materials, 2, p.241–254 (2002).
DOI: 10.1177/0021998302036002462
Google Scholar
[15]
Stöven, T.; Weyrauch, F.; Mitschang, P.; Neitzel, M. Continuous monitoring of three-dimensional resin flow through a fibre preform. Composites Part A: Applied Science and Manufacturing, 6, p.475–480 (2003).
DOI: 10.1016/s1359-835x(03)00059-9
Google Scholar
[16]
Arbter, R.; Beraud, J.M.; Binetruy, C.; Bizet, L.; Bréard, J.; Comas-Cardona, S.; Demaria, C.; Endruweit, A.; Ermanni, P.; Gommer, F.; Hasanovic, S.; Henrat, P.; Klunker, F.; Laine, B.; Lavanchy, S.; Lomov, S.V.; Long, A.; Michaud, V.; Morren, G.; Ruiz, E.; Sol, H.; Trochu, F.; Verleye, B.; Wietgrefe, M.; Wu, W.; Ziegmann, G. Experimental determination of the permeability of textiles: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 9, p.1157–1168 (2011).
DOI: 10.1016/j.compositesa.2011.04.021
Google Scholar
[17]
Parnas, R.S.; Salem, A.J. A comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements. Polymer Composites, 5, p.383–394 (1993).
DOI: 10.1002/pc.750140504
Google Scholar
[18]
Grössing, H.; Becker, D.; Kaufmann, S.; Schledjewski, R.; Mitschang, P. An Evaluation of the Reproducibility of Capacitive Sensor Based In-Plane Permeability Measurements: A Benchmarking Study. eXPRESS Polymer Letters, 9, p.129–142 (2015).
DOI: 10.3144/expresspolymlett.2015.14
Google Scholar
[19]
Hoes, K.; Dinescu, D.; Sol, H.; Vanheule, M.; Parnas, R.S.; Luo, Y.; Verpoest, I. New set-up for measurement of permeability properties of fibrous reinforcements for RTM. Composites Part A: Applied Science and Manufacturing, 7, p.959–969 (2002).
DOI: 10.1016/s1359-835x(02)00035-0
Google Scholar
[20]
Grössing, H.; Fauster, E.; Schledjewski, R. Accurate 2D permeability measurement: Optical permeability characterisation. In: SAMPE SETEC 2013 Proceedings, Wuppertal, Germany, 11. -12. September, 2013, pp.1-7.
Google Scholar
[21]
Vernet, N.; Ruiz, E.; Advani, S.; Alms, J.B.; Aubert, M.; Barburski, M.; Barari, B.; Beraud, J.M.; Berg, D.C.; Correia, N.; Danzi, M.; Delavière, T.; Dickert, M.; Di Fratta, C.; Endruweit, A.; Ermanni, P.; Francucci, G.; Garcia, J.A.; George, A.; Hahn, C.; Klunker, F.; Lomov, S.V.; Long, A.; Louis, B.; Maldonado, J.; Meier, R.; Michaud, V.; Perrin, H.; Pillai, K.; Rodriguez, E.; Trochu, F.; Verheyden, S.; Wietgrefe, M.; Xiong, W.; Zaremba, S.; Ziegmann, G. Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing, 0, p.172–184 (2014).
DOI: 10.1016/j.compositesa.2014.02.010
Google Scholar
[22]
Pearce, N.; Guild, F.; Summerscales, J. A study of the effects of convergent flow fronts on the properties of fibre reinforced composites produced by RTM. Composites Part A: Applied Science and Manufacturing, 1, p.141–152 (1998).
DOI: 10.1016/s1359-835x(97)00041-9
Google Scholar
[23]
Nielsen, D.; Pitchumani, R. Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization. Composites Part A: Applied Science and Manufacturing, 12, p.1789–1803 (2001).
DOI: 10.1016/s1359-835x(01)00013-6
Google Scholar
[24]
Gao, J.; Zhao, H.; Li, Y. Curing kinetics and thermal property characterization of the bisphenol‐F epoxy resin and phthalic anhydride system. Polymer international, 12, p.1422–1427 (2002).
DOI: 10.1002/pi.1078
Google Scholar
[25]
Kissinger, C.; Mitschang, P.; Neitzel, M.; Roeder, G.; Haberland, R. Continuous on-line permeability measurement of textile structures. In: International SAMPE Symposium and Exhibition, Long Beach, California, USA, 21. -25. May 2000, p.2089-(2096).
Google Scholar
[26]
Bickerton, S.; Sozer, E.M.; Graham, P.J.; Advani, S.G. Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part I. Experiments. Composites Part A: Applied Science and Manufacturing, 5, p.423–438 (2000).
DOI: 10.1016/s1359-835x(99)00087-1
Google Scholar
[27]
Bickerton, S.; Sozer, E.M.; Šimácek, P.; Advani, S.G. Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part II. Predictions and comparisons with experiments. Composites Part A: Applied Science and Manufacturing, 5, p.439–458 (2000).
DOI: 10.1016/s1359-835x(99)00088-3
Google Scholar