Numerical Filling Predictions and Mechanical Mold Simulations for Composite Manufacturing Techniques: RTM Tool Development

Article Preview

Abstract:

This paper presents the development of a novel omega-shaped resin transfer molding (RTM) tool, which is especially designed to host different types of sensors and to avoid common problems of RTM (e.g. uneven heating, low tool durability, deflection). Permeability measurements were executed in order to get real permeability measurements for numerical mold filling simulations. Three different kinds of flow behaviors (isotropic, orthotropic and anisotropic) were considered as filling patterns and the flow front predictions. Due to the U-shaped composite part design, the mold curvature effects on the flow front propagation caused by the increased fiber volume content in these areas were also taken into account. The tool was designed with a heating ability using purified liquid water guided to a channel circuit within both top and bottom halves of the tool. Deflection and heat transfer simulations were performed with the finite element method (FEM). All three executed simulations (filling, heat transfer and deflection) were used as a guideline for the final mold design.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

423-432

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Soutis, C. Carbon fiber reinforced plastics in aircraft construction. Material Science and Engineering, 1–2, p.171–176 (2005).

DOI: 10.1016/j.msea.2005.08.064

Google Scholar

[2] Lässig, R.; Eisenhut, M.; Mathias, A.; Schulte, R.T.; Peters, F.; Kühmann, T.; Waldmann, T.; Begemann, W. Serienproduktion von hochfesten Faserverbundbauteilen. Perspektiven für den deutschen Maschinen-und Anlagenbau, Studie Roland Berger (2012).

Google Scholar

[3] Kendall, K.N.; Rudd, C.D.; Owen, M.J.; Middleton, V. Characterization of the resin transfer moulding process. Composites Manufacturing, 4, p.235–249 (1992).

DOI: 10.1016/0956-7143(92)90111-7

Google Scholar

[4] Bickerton, S.; Advani, S.G. Characterization and modeling of race-tracking in liquidcomposite molding processes. Composites Science and Technology, 15, p.2215–2229 (1999).

DOI: 10.1016/s0266-3538(99)00077-9

Google Scholar

[5] Rieber, G.; Jiang, J.; Deter, C.; Chen, N.; Mitschang, P. Influence of textile parameters on the in-plane Permeability. Composites Part A: Applied Science and Manufacturing, 0, p.89–98 (2013).

DOI: 10.1016/j.compositesa.2013.05.009

Google Scholar

[6] C. Kissinger, Ganzheitliche Betrachtung der Harzinjektionstechnik: Messsystem zur durchgängigen Fertigungskontrolle, Hrsg. A.K. Schlarb, Kaiserslautern, Germany (2001).

Google Scholar

[7] Verleye, B.; Croce, R.; Griebel, M.; Klitz, M.; Lomov, S.V.; Morren, G.; Sol, H.; Verpoest, I.; Roose, D. Permeability of textile reinforcements: Simulation, influence of shear and validation. Composites Science and Technology, 13, p.2804–2810 (2008).

DOI: 10.1016/j.compscitech.2008.06.010

Google Scholar

[8] Liu, X. -L. Isothermal flow simulation of liquid composite molding. Composites Part A: Applied Science and Manufacturing, 12, p.1295–1302 (2000).

DOI: 10.1016/s1359-835x(00)00007-5

Google Scholar

[9] Grujicic, M.; Chittajallu, K.M.; Walsh, S. Non-isothermal preform infiltration during the vacuum-assisted resin transfer molding (VARTM) process. Applied Surface Science, 1–4, p.51–64 (2005).

DOI: 10.1016/j.apsusc.2004.09.123

Google Scholar

[10] Henry Darcy: Les fontaines publiques de la ville de Dijon. Victor Dalmont. Paris (1856).

Google Scholar

[11] Adams, K.L.; Rebenfeld, L. In-plane flow of fluids in fabrics: Structure/Flow characterization. Textile Research Journal, 11, p.647–654 (1987).

DOI: 10.1177/004051758705701104

Google Scholar

[12] Adams, K.L.; Russel, W.B.; Rebenfeld, L. Radial penetration of a viscous liquid into a planar anisotropic porous medium. International Journal of Multiphase Flow, 2, p.203–215 (1988).

DOI: 10.1016/0301-9322(88)90006-7

Google Scholar

[13] Chan A. W.; Hwang S. -T. Anisotropic in plane permeability of fabric media. Polymer Engineering and Sciene, 31, p.1233–1239 (1991).

DOI: 10.1002/pen.760311613

Google Scholar

[14] Nedanov, P.B.; Advani, S.G. A method to determine 3D permeability of fibrous reinforcements. Journal of Composite Materials, 2, p.241–254 (2002).

DOI: 10.1177/0021998302036002462

Google Scholar

[15] Stöven, T.; Weyrauch, F.; Mitschang, P.; Neitzel, M. Continuous monitoring of three-dimensional resin flow through a fibre preform. Composites Part A: Applied Science and Manufacturing, 6, p.475–480 (2003).

DOI: 10.1016/s1359-835x(03)00059-9

Google Scholar

[16] Arbter, R.; Beraud, J.M.; Binetruy, C.; Bizet, L.; Bréard, J.; Comas-Cardona, S.; Demaria, C.; Endruweit, A.; Ermanni, P.; Gommer, F.; Hasanovic, S.; Henrat, P.; Klunker, F.; Laine, B.; Lavanchy, S.; Lomov, S.V.; Long, A.; Michaud, V.; Morren, G.; Ruiz, E.; Sol, H.; Trochu, F.; Verleye, B.; Wietgrefe, M.; Wu, W.; Ziegmann, G. Experimental determination of the permeability of textiles: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 9, p.1157–1168 (2011).

DOI: 10.1016/j.compositesa.2011.04.021

Google Scholar

[17] Parnas, R.S.; Salem, A.J. A comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements. Polymer Composites, 5, p.383–394 (1993).

DOI: 10.1002/pc.750140504

Google Scholar

[18] Grössing, H.; Becker, D.; Kaufmann, S.; Schledjewski, R.; Mitschang, P. An Evaluation of the Reproducibility of Capacitive Sensor Based In-Plane Permeability Measurements: A Benchmarking Study. eXPRESS Polymer Letters, 9, p.129–142 (2015).

DOI: 10.3144/expresspolymlett.2015.14

Google Scholar

[19] Hoes, K.; Dinescu, D.; Sol, H.; Vanheule, M.; Parnas, R.S.; Luo, Y.; Verpoest, I. New set-up for measurement of permeability properties of fibrous reinforcements for RTM. Composites Part A: Applied Science and Manufacturing, 7, p.959–969 (2002).

DOI: 10.1016/s1359-835x(02)00035-0

Google Scholar

[20] Grössing, H.; Fauster, E.; Schledjewski, R. Accurate 2D permeability measurement: Optical permeability characterisation. In: SAMPE SETEC 2013 Proceedings, Wuppertal, Germany, 11. -12. September, 2013, pp.1-7.

Google Scholar

[21] Vernet, N.; Ruiz, E.; Advani, S.; Alms, J.B.; Aubert, M.; Barburski, M.; Barari, B.; Beraud, J.M.; Berg, D.C.; Correia, N.; Danzi, M.; Delavière, T.; Dickert, M.; Di Fratta, C.; Endruweit, A.; Ermanni, P.; Francucci, G.; Garcia, J.A.; George, A.; Hahn, C.; Klunker, F.; Lomov, S.V.; Long, A.; Louis, B.; Maldonado, J.; Meier, R.; Michaud, V.; Perrin, H.; Pillai, K.; Rodriguez, E.; Trochu, F.; Verheyden, S.; Wietgrefe, M.; Xiong, W.; Zaremba, S.; Ziegmann, G. Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing, 0, p.172–184 (2014).

DOI: 10.1016/j.compositesa.2014.02.010

Google Scholar

[22] Pearce, N.; Guild, F.; Summerscales, J. A study of the effects of convergent flow fronts on the properties of fibre reinforced composites produced by RTM. Composites Part A: Applied Science and Manufacturing, 1, p.141–152 (1998).

DOI: 10.1016/s1359-835x(97)00041-9

Google Scholar

[23] Nielsen, D.; Pitchumani, R. Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization. Composites Part A: Applied Science and Manufacturing, 12, p.1789–1803 (2001).

DOI: 10.1016/s1359-835x(01)00013-6

Google Scholar

[24] Gao, J.; Zhao, H.; Li, Y. Curing kinetics and thermal property characterization of the bisphenol‐F epoxy resin and phthalic anhydride system. Polymer international, 12, p.1422–1427 (2002).

DOI: 10.1002/pi.1078

Google Scholar

[25] Kissinger, C.; Mitschang, P.; Neitzel, M.; Roeder, G.; Haberland, R. Continuous on-line permeability measurement of textile structures. In: International SAMPE Symposium and Exhibition, Long Beach, California, USA, 21. -25. May 2000, p.2089-(2096).

Google Scholar

[26] Bickerton, S.; Sozer, E.M.; Graham, P.J.; Advani, S.G. Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part I. Experiments. Composites Part A: Applied Science and Manufacturing, 5, p.423–438 (2000).

DOI: 10.1016/s1359-835x(99)00087-1

Google Scholar

[27] Bickerton, S.; Sozer, E.M.; Šimácek, P.; Advani, S.G. Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part II. Predictions and comparisons with experiments. Composites Part A: Applied Science and Manufacturing, 5, p.439–458 (2000).

DOI: 10.1016/s1359-835x(99)00088-3

Google Scholar