Experimental Test and FEA of a Sheet Metal Forming Process of Composite Material and Steel Foil in Sandwich Design Using LS-DYNA

Article Preview

Abstract:

A structural concept in multi-material design is used in the automotive industry with the aim of achieving significant weight reductions of conventional car bodies. In this respect, the specific use of steel foils and continuous fiber-reinforced thermoplastics represents an interesting material combination for the production of hybrid parts in sandwich design. This contribution deals with the experimental and numerical analysis of a conventional sheet metal forming process using a composite material based on Polyamide 6 (PA6) with unidirectional endless glass fiber reinforcement and HC220Y+ZE steel foil. A unidirectional composite plate is positioned between two steel foils in sandwich design and formed under appropriate temperature conditions. For the numerical analysis of the forming process the software LS-DYNA is used.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

439-445

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Hufenbach, J. Werner, J. Kiele, CFK-Stahl-Hybridbauweise – InEco -Wunsch und Wirklichkeit, 20. Sächsische Fachtagung Umformtechnik, Dresden, (2013).

Google Scholar

[2] B. -A. Behrens, C. Bonk, C. Frischkorn, N. Grbic, A. Huskic, M. Kazhai, J. Moritz, A. Neumann, J. Schrödter, A. Bouguecha, Aktuelle Forschungsergebnisse am Institut für Umformtechnik und Umformmaschinen, 21. Umformtechnisches Kolloquium, Hannover, (2014).

Google Scholar

[3] M. Vucetic, T. Hallfeldt, C. Lepin, H. Friebe, S. Keller, E. Till, I. Heinle, J. Gerlach, W. Hotz, A. Kuppert, M. Merklein, B. -A. Behrens, Round Robin Test on Determination of a Biaxial True Stress – True Strain Curves from the Bulge Test, Proceedings of the IDDRG Conference, (2014).

DOI: 10.1063/1.3623599

Google Scholar

[4] R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society of London, Series A., Vol. 193, (1948) 281-197.

Google Scholar

[5] G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands (1983) 541-547.

Google Scholar

[6] M. Junginger, Charakterisierung und Modellierung unverstärkter thermoplastischer Kunststoffe zur numerischen Simulation von Crashvorgängen, Dissertation, EMI-Bericht 15/02, Universität der Bundeswehr München. Fakultät für Bauingenieur- und Vermessungswesen (2002).

Google Scholar

[7] G. Knust, T. Klöppel, A. Haufe, New Developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA, LS-DYNA Developer Forum, Filderstadt, (2013).

Google Scholar

[8] S. Hartmann, A. Haufe, T. Klöppel, Christian Liebold, Simulation of the Manufacturing and Serviceabilty of Continuous Fiber-reinforced Plastics, Webinar: Composite Analysis, DYNAmore GmbH, Stuttgart, (2014).

Google Scholar