[1]
O. Music et al., A review of the mechanics of metal spinning, J. Mat. Pro. Tech. (JMPT) 210 (2010) 3-23.
Google Scholar
[2]
M. Sivanandini et al., Flow Forming Of Tubes-A Review, Int. J. 5 (2012) 1-11.
Google Scholar
[3]
C. Wong et al., A review of spinning, shear forming and flow forming processes, IJT&M 43 (2003) 1419-1435.
Google Scholar
[4]
M. Hayama, H. Kudo, Experimental Study of Tube Spinning, JSME, 167 (1979) 769-775.
DOI: 10.1299/jsme1958.22.769
Google Scholar
[5]
M. Jahazi and G. Ebrahimi, The influence of flow-forming parameters and microstructure on the quality of a D6ac steel, JMPT, 103 (2000) 362-366.
DOI: 10.1016/s0924-0136(00)00508-2
Google Scholar
[6]
R.P. Singhal et al., Some Experimental Observations in the Shera Spinning of Long Tubes, JMWT, 14(1987)149-157.
Google Scholar
[7]
S.C. Chang et al. Tube spinnability of AA 2024 and 7075 aluminum alloys, J. Mat. Pro. Tech, 80-81 (1998) 676-682.
Google Scholar
[8]
M. Gur, J. Tirosh, Plastic flow instability under compressive loading during shear spinning process, ASME, 1(1982) 17–22.
DOI: 10.1115/1.3185791
Google Scholar
[9]
K. M. Rajan et al., An Investigation of the Development of Defects During Flow Forming of High Strength Thin Wall Steel Tubes, Prac. Fail. An. 1 (2001) 69-76.
DOI: 10.1007/bf02715366
Google Scholar
[10]
K.M. Rajan, P. U. Deshpande, K. Narasimhan, Effect of heat treatement of preform on the mechanical proprieties of flow formed AISI 4130-a theoretical an experimental assessment, J. Man. Pro. Tech. 126 (2002).
DOI: 10.1016/s0924-0136(02)00305-9
Google Scholar
[11]
R.K. Gupta et al., Investigation of Cracks Generated During Flow Forming of Nb-Hf-Ti Alloy Sheet, J. Fail. An, 6 (2007) 424-428.
DOI: 10.1007/s11668-007-9089-2
Google Scholar
[12]
M.J. Davidson, K. Balasubramanian, G.R.N. Tagore, Experimental investigation on flow-forming of AA6061 alloy-A Taguchi approach, JMPT 200 (2008) 283-287.
DOI: 10.1016/j.jmatprotec.2007.09.026
Google Scholar
[13]
M.J. Roy et al., Evolution of plastic strain during a flow forming process, JMPT, 209 (2009) 1018-1025.
Google Scholar
[14]
M. Haghshenas et al., Plastic strain distribution during splined-mandrel flow forming, M&D, 32 (2011) 3629-3636.
DOI: 10.1016/j.matdes.2011.02.014
Google Scholar
[15]
M. Haghshenas et al., Investigation of strain-hardening rate on splined mandrel flow forming of 5052 and 6061 aluminum alloys, Mat. Sc. 532 (2012) 287-294.
DOI: 10.1016/j.msea.2011.10.094
Google Scholar
[16]
B. Podder et al., Effect of preform heat treatment on the flow formability and mechanical properties of AISI4340 steel, M&D 37 (2012)174-181.
DOI: 10.1016/j.matdes.2012.01.002
Google Scholar
[17]
S. Notarigiacomo et al., The influence of flow-forming process parameters on the fatigue behaviour of high-strength steel wheels for the automotive industry, EC Off. Publ. (2009).
Google Scholar
[18]
A.R.F. Nahrekhalaji et al., Modeling and Investigation of the Wall Thickness Changes and Process Time in Thermo-Mechanical Tube Spinning Process Using Design of Experiments, Eng., 2 (2010) 141-148.
DOI: 10.4236/eng.2010.23020
Google Scholar
[19]
M. Srinivasulu et al., Experimental investigations to predict mean diameter of AA6082 tube in flow forming process- DOE approach, IOSRJEN 2 (2012) 52-60.
DOI: 10.9790/3021-02635260
Google Scholar
[20]
A. Jalali Aghchai et al., Flow forming optimization based on diametral growth using finite element method and response surface methodology, J. Eng. Man. 226, (2012) 2002-(2012).
DOI: 10.1177/0954405412461328
Google Scholar
[21]
L. Wang et al., Roller path design by tool compensation in multi-pass conventional spinning, M&D 46(2013)645-653.
DOI: 10.1016/j.matdes.2012.10.048
Google Scholar
[22]
T.R. Mohan et al., Studies on power spinning of tubes, Int. J. Prod. Res., 10 (1970) 351-364.
Google Scholar
[23]
M. Hayama at al., Analysis of Diametral Growth and Working Forces in Tube Spinning, JSME 22 (1979) 776-784.
DOI: 10.1299/jsme1958.22.776
Google Scholar
[24]
R.P. Singhal, N. Delhi, P.K. Saxena, N.G. Commission, R. Prakash, Estimation of Power in the Shear Spinning of Long Tubes in Hard-To-Work Materials, J. Mat. 23 (1990) 29-40.
DOI: 10.1016/0924-0136(90)90120-j
Google Scholar
[25]
S.S. Jolly et al., Analysis of Power and Forces in the Making of Long Tubes in Hard-to-Work Materials, Proc.W. Congr. Eng. 2 (2010).
Google Scholar
[26]
H.R. Molladavoudi, F. Djavanroodi, Experimental study of thickness reduction effects on mechanical properties and spinning accuracy of aluminum 7075-O, Int.J. Adv. Man. Tech. 52 (2010) 949-957.
DOI: 10.1007/s00170-010-2782-4
Google Scholar
[27]
M.J. Roy et al., Analytical solution of the tooling/workpiece contact interface shape during a flow forming operation, JMPT 210 (2010) 1976-(1985).
DOI: 10.1016/j.jmatprotec.2010.07.011
Google Scholar
[28]
M.H. Parsa, et al., Flow-forming and flow formability simulation, Int. J. Adv. Man. Tech. 42 (2008) 463-473.
Google Scholar
[29]
J.W. Park, Y.H. Kim, W.B. Bae, Analysis of tube-spinning processes by the upper-bound stream-function method, JMPT 66 (1997) 195-203.
DOI: 10.1016/s0924-0136(96)02519-8
Google Scholar
[30]
H.N. Nagarajan et al., Mechanics of Flow Forming, CIRP Ann – Man. Tech. 30 (1981)159-162.
Google Scholar
[31]
K.S. Lee, L. Lu, A study on the flow forming of cylindrical tubes, JMPT 113 (2001) 739-742.
Google Scholar
[32]
Y. Xu, S. Zhang, P. Li, K. Yang, D. Shan, Y. Lu, 3D rigid–plastic FEM numerical simulation on tube spinning, JMPT 113 (2001) 710-713.
DOI: 10.1016/s0924-0136(01)00644-6
Google Scholar
[33]
X. Kemin et al., Elasto-plastic FEM analysis and experimental study of diametral growth in tube spinning, JMPT 69 (1997) 172-175.
DOI: 10.1016/s0924-0136(97)00013-7
Google Scholar
[34]
X. Kemin et al., The disposal of key problems in the FEM analysis of tube stagger spinning, JMPT 69(1997)176-179.
DOI: 10.1016/s0924-0136(97)00014-9
Google Scholar
[35]
C.C. Wong et al., Effects of roller path and geometry on the flow forming of solid cylindrical components, JMPT 167 (2005) 344-353.
DOI: 10.1016/j.jmatprotec.2005.05.039
Google Scholar
[36]
H. Lexian et al., An analytical contact model for finite element analysis of tube spinning process, JEM 222 (2008) 1375-1385.
Google Scholar
[37]
K. Li et al., Research on the distribution of the displacement in backward tube spinning, JMPT 79 (1998) 185-188.
Google Scholar
[38]
M.S. Mohebbi at al., Experimental study and FEM analysis of redundant strains in flow forming of tubes, JMPT 210 (2010) 389-395.
DOI: 10.1016/j.jmatprotec.2009.09.028
Google Scholar
[39]
M. Joseph Davidson et al., An experimental study on the quality of flow-formed AA6061 tubes, JMPT, 203 (2008) 321-325.
Google Scholar
[40]
R. Prakash et al., Shear spinning technology for manufacture of long thin wall tubes of small bore, JMPT 54 (1995) 186-192.
DOI: 10.1016/0924-0136(95)01940-5
Google Scholar
[41]
K.M. Rajan et al., Experimental studies on bursting pressure of thin-walled flow formed pressure vessels, JMPT 125-126 (2002) 228-234.
DOI: 10.1016/s0924-0136(02)00298-4
Google Scholar
[42]
M. Srinivasulu et al., Experimental studies on the characteristics of AA6082 flow formed tubes, JMER 4 (2012) 192-198.
Google Scholar