[1]
C.Y. Lee, D.H. Choi, Y.M. Yeon, S.B. Jung, Dissimilar friction stir spot welding of low carbon steel and Al–Mg alloy by formation of IMCs, Sci Technol Weld Joi 14 (2009) 216–220.
DOI: 10.1179/136217109x400439
Google Scholar
[2]
Astarita, A., Squillace, A., Carrino, L., Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets, J Mater Eng Perform 23 (2014), 3754-3761.
DOI: 10.1007/s11665-014-1140-3
Google Scholar
[3]
P. Carlone, G.S. Palazzo, Longitudinal residual stress analysis in AA2024-T3 friction stir welding, Open Mech Eng J 7 (2013), 18–26.
DOI: 10.2174/1874155x01307010018
Google Scholar
[4]
G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints, Int J Fatigue 25 (2003) 77–88.
DOI: 10.1016/s0142-1123(02)00038-5
Google Scholar
[5]
M.N. James, D.J. Hughes, Z. Chen, H. Lombard, D.G. Hattingh, D. Asquith, J.R. Yates, P.J. Webster, Residual stresses and fatigue performance, Eng Fail Anal 14 (2007), 384–395.
DOI: 10.1016/j.engfailanal.2006.02.011
Google Scholar
[6]
P. Carlone, R. Citarella, M. Lepore, G.S. Palazzo, A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints, Key Eng Mat 554–557 (2013), 2118–2126.
DOI: 10.4028/www.scientific.net/kem.554-557.2118
Google Scholar
[7]
M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, B. de Meester, The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3, J Mater Process Tech 213 (2013) 477– 486.
DOI: 10.1016/j.jmatprotec.2012.11.001
Google Scholar
[8]
P.M.G.P. Moreira, A.M.P. de Jesus, A.S. Ribeiro, P.M.S.T. de Castro, Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparison, Theor Appl Fract Mec, 50, 81-91, (2008).
DOI: 10.1016/j.tafmec.2008.07.007
Google Scholar
[9]
P.M.G.P. Moreira, F.M.F. de Oliveira, P.M.S.T. de Castro, Fatigue behavior of notched specimens of friction stir welded aluminium alloy 6063-T6, J Mater Process Tech, 207, 283-292, (2008).
DOI: 10.1016/j.jmatprotec.2007.12.113
Google Scholar
[10]
R. Citarella, G. Cricrì, A two-parameter model for crack growth simulation by combined FEM-DBEM approach, Adv Eng Softw 40 (2009), 363-373.
DOI: 10.1016/j.advengsoft.2008.05.001
Google Scholar
[11]
H. Schmidt, J. Hattel, Thermal modelling of friction stir welding, Scripta Mater 58 (2008) 332–337.
DOI: 10.1016/j.scriptamat.2007.10.008
Google Scholar
[12]
M. R Sonne, P. Carlone, G.S. Palazzo, J.H. Hattel , Numerical modeling of AA2024-T3 friction stir welding process for residual stress evaluation, including softening effects, Key Eng Mater, 611-612, 1675-1682, (2014).
DOI: 10.4028/www.scientific.net/kem.611-612.1675
Google Scholar
[13]
O.R. Myhr, O. Grong, Process modeling applied to 6082-T6 aluminum weldments. Part 1: Reaction kinetics. Part 2: Applications of model, Acta Metal 39 (1991), 2693–2708.
DOI: 10.1016/0956-7151(91)90085-f
Google Scholar
[14]
D.G. Richards, P.B. Pragnell, S.W. Williams, P.J. Withers, Global mechanical tensioning for the management of residual stresses in welds, Mater Sci Eng A A489 (2008), 351–362.
DOI: 10.1016/j.msea.2007.12.042
Google Scholar
[15]
M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, J Eng Mater-T ASME 123 (2001), 162–168.
DOI: 10.1115/1.1345526
Google Scholar
[16]
P. Carlone, G.S. Palazzo, Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallography Microstruct Anal 2 (2013), 213–222.
DOI: 10.1007/s13632-013-0078-4
Google Scholar
[17]
D.A. Price, S.W. Williams, A. Wescott, J.C. Harrison, A. Rezai, A. Steuwer, M. Peel, P. Staron, M. Koak, Distortion control in welding by mechanical tensioning, Sci Technol Weld Joi 12 (2007), 620–633.
DOI: 10.1179/174329307x213864
Google Scholar
[18]
J. Altenkirch, A. Steuwer, P.J. Withers, S.W. Williams, M. Poad, S.W. Wen, Residual stress engineering in friction stir welds by roller tensioning, Sci Technol Weld Joi 14 (2009), 185–192.
DOI: 10.1179/136217108x388624
Google Scholar
[19]
R. Citarella, P. Carlone, M. Lepore, G.S. Palazzo, Numerical-Experimental Crack Growth Analysis in AA2024-T3 FSWed Butt Joints, Adv Eng Softw, DOI 10. 1016/j. advengsoft. 2014. 09. 018.
DOI: 10.1016/j.advengsoft.2014.09.018
Google Scholar
[20]
R. Citarella, P. Carlone, M. Lepore, G.S. Palazzo, A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints, Int J Mat Form, DOI 10. 1007/s12289-014-1186-7.
DOI: 10.4028/www.scientific.net/kem.554-557.2118
Google Scholar