Integrated FEM-DBEM Simulation of Crack Propagation in AA2024-T3 FSW Butt Joints Considering Manufacturing Effects

Article Preview

Abstract:

This paper deals with a numerical and experimental investigation on the influence of residual stresses on fatigue crack growth in AA2024-T3 friction stir welded butt joints. An integrated FEM-DBEM procedure for the simulation of crack propagation is proposed and discussed. A numerical FEM model of the welding process of precipitation hardenable AA2024-T3 aluminum alloy is employed to infer the process induced residual stress field. The reliability of the FEM simulations with respect to the induced residual stresses is assessed comparing numerical outcomes with experimental data obtained by means of the contour method. The computed stress field is transferred to a DBEM environment and superimposed to the stress field produced by a remote fatigue traction load applied on a friction stir welded cracked specimen. Numerical results are compared with experimental data showing good agreement and highlighting the predictive capability of the proposed method. Furthermore, the influence of the residual stress distribution on crack growth is evidenced.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

877-882

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Y. Lee, D.H. Choi, Y.M. Yeon, S.B. Jung, Dissimilar friction stir spot welding of low carbon steel and Al–Mg alloy by formation of IMCs, Sci Technol Weld Joi 14 (2009) 216–220.

DOI: 10.1179/136217109x400439

Google Scholar

[2] Astarita, A., Squillace, A., Carrino, L., Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets, J Mater Eng Perform 23 (2014), 3754-3761.

DOI: 10.1007/s11665-014-1140-3

Google Scholar

[3] P. Carlone, G.S. Palazzo, Longitudinal residual stress analysis in AA2024-T3 friction stir welding, Open Mech Eng J 7 (2013), 18–26.

DOI: 10.2174/1874155x01307010018

Google Scholar

[4] G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints, Int J Fatigue 25 (2003) 77–88.

DOI: 10.1016/s0142-1123(02)00038-5

Google Scholar

[5] M.N. James, D.J. Hughes, Z. Chen, H. Lombard, D.G. Hattingh, D. Asquith, J.R. Yates, P.J. Webster, Residual stresses and fatigue performance, Eng Fail Anal 14 (2007), 384–395.

DOI: 10.1016/j.engfailanal.2006.02.011

Google Scholar

[6] P. Carlone, R. Citarella, M. Lepore, G.S. Palazzo, A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints, Key Eng Mat 554–557 (2013), 2118–2126.

DOI: 10.4028/www.scientific.net/kem.554-557.2118

Google Scholar

[7] M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, B. de Meester, The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3, J Mater Process Tech 213 (2013) 477– 486.

DOI: 10.1016/j.jmatprotec.2012.11.001

Google Scholar

[8] P.M.G.P. Moreira, A.M.P. de Jesus, A.S. Ribeiro, P.M.S.T. de Castro, Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparison, Theor Appl Fract Mec, 50, 81-91, (2008).

DOI: 10.1016/j.tafmec.2008.07.007

Google Scholar

[9] P.M.G.P. Moreira, F.M.F. de Oliveira, P.M.S.T. de Castro, Fatigue behavior of notched specimens of friction stir welded aluminium alloy 6063-T6, J Mater Process Tech, 207, 283-292, (2008).

DOI: 10.1016/j.jmatprotec.2007.12.113

Google Scholar

[10] R. Citarella, G. Cricrì, A two-parameter model for crack growth simulation by combined FEM-DBEM approach, Adv Eng Softw 40 (2009), 363-373.

DOI: 10.1016/j.advengsoft.2008.05.001

Google Scholar

[11] H. Schmidt, J. Hattel, Thermal modelling of friction stir welding, Scripta Mater 58 (2008) 332–337.

DOI: 10.1016/j.scriptamat.2007.10.008

Google Scholar

[12] M. R Sonne, P. Carlone, G.S. Palazzo, J.H. Hattel , Numerical modeling of AA2024-T3 friction stir welding process for residual stress evaluation, including softening effects, Key Eng Mater, 611-612, 1675-1682, (2014).

DOI: 10.4028/www.scientific.net/kem.611-612.1675

Google Scholar

[13] O.R. Myhr, O. Grong, Process modeling applied to 6082-T6 aluminum weldments. Part 1: Reaction kinetics. Part 2: Applications of model, Acta Metal 39 (1991), 2693–2708.

DOI: 10.1016/0956-7151(91)90085-f

Google Scholar

[14] D.G. Richards, P.B. Pragnell, S.W. Williams, P.J. Withers, Global mechanical tensioning for the management of residual stresses in welds, Mater Sci Eng A A489 (2008), 351–362.

DOI: 10.1016/j.msea.2007.12.042

Google Scholar

[15] M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, J Eng Mater-T ASME 123 (2001), 162–168.

DOI: 10.1115/1.1345526

Google Scholar

[16] P. Carlone, G.S. Palazzo, Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallography Microstruct Anal 2 (2013), 213–222.

DOI: 10.1007/s13632-013-0078-4

Google Scholar

[17] D.A. Price, S.W. Williams, A. Wescott, J.C. Harrison, A. Rezai, A. Steuwer, M. Peel, P. Staron, M. Koak, Distortion control in welding by mechanical tensioning, Sci Technol Weld Joi 12 (2007), 620–633.

DOI: 10.1179/174329307x213864

Google Scholar

[18] J. Altenkirch, A. Steuwer, P.J. Withers, S.W. Williams, M. Poad, S.W. Wen, Residual stress engineering in friction stir welds by roller tensioning, Sci Technol Weld Joi 14 (2009), 185–192.

DOI: 10.1179/136217108x388624

Google Scholar

[19] R. Citarella, P. Carlone, M. Lepore, G.S. Palazzo, Numerical-Experimental Crack Growth Analysis in AA2024-T3 FSWed Butt Joints, Adv Eng Softw, DOI 10. 1016/j. advengsoft. 2014. 09. 018.

DOI: 10.1016/j.advengsoft.2014.09.018

Google Scholar

[20] R. Citarella, P. Carlone, M. Lepore, G.S. Palazzo, A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints, Int J Mat Form, DOI 10. 1007/s12289-014-1186-7.

DOI: 10.4028/www.scientific.net/kem.554-557.2118

Google Scholar