A Transparent and Tough β-Si3N4 Ceramic with a Whiskery Microstructure

Article Preview

Abstract:

The transparent β-Si3N4 ceramic with a whisker-like microstructure was prepared by hot-pressing at 2000 °C for 26 h, with MgSiN2 as an additive. The resultant material achieves the maximum transmittance of 70 % at the wavelength of about 2.5 μm and the transmittance value keeps higher than 60 % in the range of 700-4500 nm wavelength, which is attributed to the very small amount of the intergranular amorphous phase along with high density. The present transparent β-Si3N4 ceramic exhibits an indentation fracture toughness of 7.2±0.3 MPa m1/2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-5

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. Digiovanni, L. Fehrenbacher and D. W. Roy, Hard Transparent Domes and Windows from Magnesium Aluminate Spinel, Proceedings SPIE, 5786, 56-63 (2005).

DOI: 10.1117/12.603953

Google Scholar

[2] J. W. McCauley, P. Patel., M. Chen., G. Gilde., E. Strassburger, B. Paliwal, K. T. Ramesh and D. P. Dandekar, AlON: A Brief History of Its Emergence and Evolution, J. Euro. Ceram. Soc., 29.

DOI: 10.1016/j.jeurceramsoc.2008.03.046

Google Scholar

[2] 223-36 (2009).

Google Scholar

[3] J. Kimberley and K.T. Ramesh, Dynamic Response of Transparent Ceramic MgAl2O4 Spinel, Scripta Mater., 65.

DOI: 10.1016/j.scriptamat.2011.07.044

Google Scholar

[9] 830-33 (2011).

Google Scholar

[4] J. J. Guo, K. Wang, T. Fujita, J. W. McCauley, J. P. Singh and M. W. Chen, Nanoindentation Characterization of Deformation and Failure of Aluminum Oxynitride, Acta Mater., 59.

DOI: 10.1016/j.actamat.2010.11.034

Google Scholar

[4] 1671-79 (2011).

Google Scholar

[5] I. W. Chen and A. Rosenflanz, A Tough SiAlON Ceramic Based on α-Si3N4 with a Whisker-like Microstructure, Nature, 389.

DOI: 10.1038/39542

Google Scholar

[16] 701-4 (1997).

Google Scholar

[6] A. Ziegler, J. C. Idrobo, M. K. Cinibulk, C. Kisielowski, N. D. Browning and R. O. Ritchie, Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics, Science, 306.

DOI: 10.1126/science.1104173

Google Scholar

[5702] 1768-70 (2004).

Google Scholar

[7] M. Mitomo, Y. Moriyoshi, T. Sakai, T. Ohsaka and M. Kobayashi, Translucent β-Sialon Ceramics,J. Mater. Sci. Lett., 1.

DOI: 10.1007/bf00724710

Google Scholar

[1] 25-26 (1981).

Google Scholar

[8] B. S. B. Karunaratne, R. J. Lumby and M. H. Lewis, Rare-earth-doped α'-Sialon Ceramics with Novel Optical Properties, J. Mater. Res., 11.

DOI: 10.1557/jmr.1996.0353

Google Scholar

[11] 2790-94 (1996).

Google Scholar

[9] H. Mandal, New Developments in α-SiAlON Ceramics, J. Euro. Ceram. Soc., 19 [13-14] 2349-57 (1999).

Google Scholar

[10] M. I. Jones, H. Hyuga, K. Hirao and Y. Yamauchi, Highly Transparent Lu-α-SiAlON, , J. Am. Ceram. Soc., 87.

Google Scholar

[4] 714-16 (2004).

Google Scholar

[11] X. L. Su, P. L. Wang, W. W. Chen, B. Zhu, Y. B. Cheng and D. S. Yan, Translucent α-Sialon Ceramics by Hot Pressing, J. Am. Ceram. Soc., 87.

Google Scholar

[4] 730-32 (2004).

Google Scholar

[12] J. M. Xue, Q. Liu and L. H. Gui, Low-temperature Hot-Pressed Dy-α-Sialon Ceramics with an LiF Additive, ,J. Am. Ceram. Soc., 90.

DOI: 10.1111/j.1551-2916.2007.01558.x

Google Scholar

[5] 1623-25 (2007).

Google Scholar

[13] Y. Xiong, Z. Y. Fu, H. Wang, W. M. Wang, J. Y. Zhang, Q. J. Zhang, S. W. Lee and K. Niihara, Translucent Mg-α-Sialon Ceramics Prepared by Spark Plasma Sintering, J. Am. Ceram. Soc., 90.

DOI: 10.1111/j.1551-2916.2007.01615.x

Google Scholar

[5] 1647-49 (2007).

Google Scholar

[14] F. Ye, L. M. Liu, C. F. Liu, H. J. Zhang, Y. Zhou and J. Yu, High Infrared Transmission of Y3+-Yb3+-Doped α-SiAlON, Mater. Lett., 62.

DOI: 10.1016/j.matlet.2008.08.034

Google Scholar

[30] 4535-38 (2008).

Google Scholar

[15] G. H. Peng, G. J. Jiang, H. R. Zhuang and W. L. Li, A Novel Route for Preparing MgSiN2 Powder by Combustion Synthesis, Mater. Sci. Eng. A, 397 [1-2] 65-68 (2005).

Google Scholar

[16] G. Himsolt, H. Knoch, H. Huebner and F. W. Kleinlein, Mechanical Properties of Hot-Pressed Silicon Nitride with Different Grain Structures, J. Am. Ceram. Soc., 62 [1-2] 29-32 (1979).

DOI: 10.1111/j.1151-2916.1979.tb18799.x

Google Scholar

[17] F. F. Lange, Fracture Toughness of Si3N4 as a Function of the Initial α-Phase Content, J. Am. Ceram. Soc., 62 [7-8] 428-30 (1979).

Google Scholar

[18] I. M. Peterson and T. Y. Tien, Effect of the Grain Boundary Thermal Expansion Coefficient on the Fracture Toughness in Silicon Nitride, J. Am. Ceram. Soc., 78.

DOI: 10.1111/j.1151-2916.1995.tb08667.x

Google Scholar

[9] 2345-52 (1995).

Google Scholar

[19] P. F. Becher, G. S. Painter, E. Y. Sun, C. H. Hsueh and M. J. Lance, The Importance of Amorphous Intergranular Films in Self-Reinforced Si3N4 Ceramics, Acta Mater., 48 [18-19] 4493-99 (2000).

DOI: 10.1016/s1359-6454(00)00236-6

Google Scholar