Characterizations of (Mn, Sb) Co-Tuned PZMNS-PZT Piezoelectric Ceramics in the Morphotropic Phase Boundary and their Applications on Multi-Bulk Step-Down Piezoelectric Transformers

Article Preview

Abstract:

In this study, the (Mn, Sb) co-tuned PbCa0.01[(MnxZn0.1-x)1/3(SbxNb0.1-x)2/3 (Zr0.505Ti0.4895)0.9]O3 (PCZMNSZT-100x) ceramics were prepared near the morphotropic phase boundary (MPB) using the wolframite precursor method. The phase structure evolutions, electrical and temperature stability properties were systematically investigated. As the fraction of rhombohedral phase increases, the degree of disorder in the diffused phase transition (DPT) correspondingly increased and the “hard” piezoelectric characterization would be enhanced. Moreover, the temperature change rate of k, Qm and fr can be tuned by adjusting the x content. The specimens with x=0.08 exhibit the obtained values as kp ~ 0.50, kt ~ 0.52, Qm ~ 1550, and the low temperature change rate of properties having Δfr/fr = -0.02% and ΔQm/Qm = 10.5%, up to 100 °C. To evaluate the material feasibility, the proposed multi-bulk step-down transformers using a ring/dot structure are fabricated. Their obtained electrical properties have a maximum efficiency of 92% with an output power of 15 W, a voltage gain of 0.68 and a nearly zero temperature change rate of resonant frequency are found at the load of 100 Ω.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-152

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J. Moulson, J. M. Herbert, Electroceramics, second ed., John Wiley and Sons, New York, (2003).

Google Scholar

[2] S. M. Lee, C. B. Yoon, S.H. Lee, and H. E. Kim, J. Mater. Res. 19 (2004) 2553–2556.

Google Scholar

[3] F. Gao, L. H. Cheng, R. Z Hong, J. Liu, C. J. Wang, C. S. Tian, 35 (2009) 1719–1723.

Google Scholar

[4] Z. Yang, X. Chao, R. Zhang, Y. Chang, Y. Chen, Mater. Sci. Eng. B. 138 (2007) 277–283.

Google Scholar

[5] A. Ngamjarurojana, S. Ural, S. H. Park, et al., Ceram. Inter. 24 (2008) 705-708.

Google Scholar

[6] Z. Yang Z, H. Li, X. Zong, and Y. Chang, 26 (2006), 3197-3202.

Google Scholar

[7] H. Li, Z. Yang, X. Zong, and Y. Chang, Mater. Sci. Eng. B. 130 (2006), 288-294.

Google Scholar

[8] S. Priya, S. Ural, H. W. Kim, K. Uchino, and T. Ezaki, Jap. J. Appl. Phys. 43 (2004) 3503-3510.

Google Scholar

[9] S. Priya, H. Kim, S. Ural, and K. Uchino, IEEE Trans. Ultra. Ferro. Freq. Contr. 53 (2006) 810-816.

DOI: 10.1109/tuffc.2006.1611041

Google Scholar

[10] M. R. Yang, S. Y. Chu, I. H. Chan, and S. K. Huang, J. Appl. Phys. 110 (2011) 044503.

Google Scholar

[11] EEE Standard on Piezoelectricity ANSI/IEEE Standard 176-1987, The Institute of Electrical and Electronics Engineers, New York, (1987).

Google Scholar

[12] A. Boutarfaia, Ceram. Inter. 26 (2000) 583-587.

Google Scholar

[13] C. C. Tsai, S.Y. Chu, J. S. Jiang, C. S. Hong, and Y. F. Chiu, Ceram. Int. 40 (2014) 11713-11725.

Google Scholar

[14] K Uchino and S. Nomura, Ferroelectric. 44 (1982) 53-61.

Google Scholar