Li2ZnTi3O8 Microwave Dielectric Ceramics Prepared by the Reaction-Sintering Process

Article Preview

Abstract:

Li2ZnTi3O8 ceramics were prepared by reaction-sintering process (calcination free). The crystal phase and microstructure were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). A pure phase of Li2ZnTi3O8 ceramics sintered at 1075 °C-1150 °C with cubic spinel structure was confirmed by XRD. The microwave dielectric properties (εr, Qxf) of Li2ZnTi3O8 ceramics were strongly dependent on the densification and grain size. The τf of Li2ZnTi3O8 ceramics was almost independent with the sintering temperatures. In particular, Li2ZnTi3O8 ceramics by reaction-sintering method sintered at 1125 °C for 5 h exhibited good combination microwave dielectric properties of εr=21.7, Q×f=70 500 GHz (at 7.5 GHz) and τf=-13 ppm/°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-167

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q.W. Liao, L.X. Li, J. Am. Ceram. Soc. 92 (2009) 96-94.

Google Scholar

[2] C.C. Li, X.Y. Wei, H.X. Yan, J. Eur. Ceram. Soc. 32 (2012) 4015-4020.

Google Scholar

[3] H.F. Zhou, X.B. Liu, L. Fang, J. Eur. Ceram. Soc. 32 (2012) 261-265.

Google Scholar

[4] T. Trendafilova, K. Ivanova, J. Optoelectron. Adv. Mater. 9 (2007), 271-274.

Google Scholar

[5] X.B. Liu, H.F. Zhou, L. Fang, J. Alloys. Compd. 515 (2012) 22-25.

Google Scholar

[6] V.S. Hernandez, L.M.T. Martinez, A.R. West, J. Mater. Chem. 6 (1996), 1533-1536.

Google Scholar

[7] S. George, M. T. Sebastian, J. Am. Ceram. Soc. 93 (2010), 2164-2166.

Google Scholar

[8] S.C. Li, Y.J. Geng, P. Zhang, Electron. Mater. Lett. 8 (2012), 401-404.

Google Scholar

[9] S. George, M.T. Sebastian, J. Eur. Ceram. Soc. 30 (2010) 2585-2592.

Google Scholar

[10] C.L. Huang, C.H. Su, C.M. Chang, J. Am. Ceram. Soc. 94 (2011), 4146-4149.

Google Scholar

[11] G. Sumesh, M. T. Sebastian, Int. J. Appl. Ceram. Technol. 8 (2011), 1400-1407.

Google Scholar

[12] L. Fang, D. Chu, H. F. Zhou, J. Alloys. Compd. 509 (2011) 8840-8844.

Google Scholar

[13] L.B. Kong, J. Ma, Mater. Lett. 51 (2001) 95-100.

Google Scholar

[14] L.X. Li, X. Ding, Q.W. Liao, Ceram. Int. 38 (2012) 1937-(1941).

Google Scholar

[15] H.F. Zhou, H. Wang, X. Yao, J. Am. Ceram. Soc. 91 (2008), 3444-447.

Google Scholar

[16] W. C. Tsai, Y. H. Liou and Y.C. Liou, Mater. Sci. Eng. B-Adv. 177 (2012) 1133-1137.

Google Scholar

[17] Y. C. Liou, Z. S. Tsai, K.Z. Fung, Ceram. Int. 36 (2010) 1887-1892.

Google Scholar

[18] H.K. Li, W.Z. Lu, W. Lei, Mater. Lett. 71 (2012), 148-150.

Google Scholar

[19] L.X. Li, X. Ding, Q.W. Liao, J. Alloys. Compd. 509 (2011) 7271-7276.

Google Scholar

[20] C.F. Shih, W.M. Li, K.S. Tung, J. Am. Ceram. Soc. 93 (2010), 2448-2451.

Google Scholar

[21] D. Zhou, H. Wang, X. Yao, J. Eur. Ceram. Soc. 31 (2011) 2749-2752.

Google Scholar

[22] Y.Y. Zhou, C. Tian, Z.X. Yue, J. Am. Ceram. Soc. 95 (2012), 1665-1670.

Google Scholar

[23] E. S. Kim, C. J. Jeon and P. G. Clem, J. Am. Ceram. Soc. 95 (2012), 2934-2938.

Google Scholar

[24] L. Fang, Q. W. Liu, C.X. Su, Mater. Lett. 81 (2012), 34-36.

Google Scholar

[25] R. Y. Yang, M. H. Weng, H. Kuan, Ceram. Int. 35 (2009), 39-43.

Google Scholar

[26] I. Bobowska, A. Wypych and P. Wojciechowski, Mater. Chem. Phys. 134 (2012) 87-92.

Google Scholar