Li2ZnTi3O8 Microwave Dielectric Ceramics Prepared by the Reaction-Sintering Process

Abstract:

Article Preview

Li2ZnTi3O8 ceramics were prepared by reaction-sintering process (calcination free). The crystal phase and microstructure were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). A pure phase of Li2ZnTi3O8 ceramics sintered at 1075 °C-1150 °C with cubic spinel structure was confirmed by XRD. The microwave dielectric properties (εr, Qxf) of Li2ZnTi3O8 ceramics were strongly dependent on the densification and grain size. The τf of Li2ZnTi3O8 ceramics was almost independent with the sintering temperatures. In particular, Li2ZnTi3O8 ceramics by reaction-sintering method sintered at 1125 °C for 5 h exhibited good combination microwave dielectric properties of εr=21.7, Q×f=70 500 GHz (at 7.5 GHz) and τf=-13 ppm/°C.

Info:

Periodical:

Edited by:

Hong Lin and Jianghong Gong

Pages:

164-167

Citation:

X. S. Hu et al., "Li2ZnTi3O8 Microwave Dielectric Ceramics Prepared by the Reaction-Sintering Process", Key Engineering Materials, Vol. 655, pp. 164-167, 2015

Online since:

July 2015

Export:

Price:

$41.00

[1] Q.W. Liao, L.X. Li, J. Am. Ceram. Soc. 92 (2009) 96-94.

[2] C.C. Li, X.Y. Wei, H.X. Yan, J. Eur. Ceram. Soc. 32 (2012) 4015-4020.

[3] H.F. Zhou, X.B. Liu, L. Fang, J. Eur. Ceram. Soc. 32 (2012) 261-265.

[4] T. Trendafilova, K. Ivanova, J. Optoelectron. Adv. Mater. 9 (2007), 271-274.

[5] X.B. Liu, H.F. Zhou, L. Fang, J. Alloys. Compd. 515 (2012) 22-25.

[6] V.S. Hernandez, L.M.T. Martinez, A.R. West, J. Mater. Chem. 6 (1996), 1533-1536.

[7] S. George, M. T. Sebastian, J. Am. Ceram. Soc. 93 (2010), 2164-2166.

[8] S.C. Li, Y.J. Geng, P. Zhang, Electron. Mater. Lett. 8 (2012), 401-404.

[9] S. George, M.T. Sebastian, J. Eur. Ceram. Soc. 30 (2010) 2585-2592.

[10] C.L. Huang, C.H. Su, C.M. Chang, J. Am. Ceram. Soc. 94 (2011), 4146-4149.

[11] G. Sumesh, M. T. Sebastian, Int. J. Appl. Ceram. Technol. 8 (2011), 1400-1407.

[12] L. Fang, D. Chu, H. F. Zhou, J. Alloys. Compd. 509 (2011) 8840-8844.

[13] L.B. Kong, J. Ma, Mater. Lett. 51 (2001) 95-100.

[14] L.X. Li, X. Ding, Q.W. Liao, Ceram. Int. 38 (2012) 1937-(1941).

[15] H.F. Zhou, H. Wang, X. Yao, J. Am. Ceram. Soc. 91 (2008), 3444-447.

[16] W. C. Tsai, Y. H. Liou and Y.C. Liou, Mater. Sci. Eng. B-Adv. 177 (2012) 1133-1137.

[17] Y. C. Liou, Z. S. Tsai, K.Z. Fung, Ceram. Int. 36 (2010) 1887-1892.

[18] H.K. Li, W.Z. Lu, W. Lei, Mater. Lett. 71 (2012), 148-150.

[19] L.X. Li, X. Ding, Q.W. Liao, J. Alloys. Compd. 509 (2011) 7271-7276.

[20] C.F. Shih, W.M. Li, K.S. Tung, J. Am. Ceram. Soc. 93 (2010), 2448-2451.

[21] D. Zhou, H. Wang, X. Yao, J. Eur. Ceram. Soc. 31 (2011) 2749-2752.

[22] Y.Y. Zhou, C. Tian, Z.X. Yue, J. Am. Ceram. Soc. 95 (2012), 1665-1670.

[23] E. S. Kim, C. J. Jeon and P. G. Clem, J. Am. Ceram. Soc. 95 (2012), 2934-2938.

[24] L. Fang, Q. W. Liu, C.X. Su, Mater. Lett. 81 (2012), 34-36.

[25] R. Y. Yang, M. H. Weng, H. Kuan, Ceram. Int. 35 (2009), 39-43.

[26] I. Bobowska, A. Wypych and P. Wojciechowski, Mater. Chem. Phys. 134 (2012) 87-92.