[1]
X. Deng, N. Chawla, K.K. Chawla, et al. Mechanical Behavior of Multilayered Nanoscale Metal-Ceramic Composites, Ad. Eng. Mater. 7 (2005) 1099-1108.
DOI: 10.1002/adem.200500161
Google Scholar
[2]
T.W. Noh, Y. Song, S.I. Lee, et al. Percolation effects in the optical properties of Ni-MgO composites, Phys. Rev. B. 33 (1986) 3793.
DOI: 10.1103/physrevb.33.3793
Google Scholar
[3]
K. Takagi, Development and application of high strength ternary boride base cermets, J. Solid State Chem. 179 (2006) 2809-2818.
DOI: 10.1016/j.jssc.2006.01.023
Google Scholar
[4]
A. Kawasaki, R. Watanabe, Thermal fracture behavior of metal/ceramic functionally graded materials, Eng. Frac. Mech. 69 (2002) 1713-1728.
DOI: 10.1016/s0013-7944(02)00054-1
Google Scholar
[5]
M.W. Finnis, The theory of metal-ceramic interfaces, J. Phys-Condens. Mat. 32 (1996) 5811.
Google Scholar
[6]
X.A. Wang, Z.C. Shi, M. Chen, et al. Tunable Electromagnetic Properties in Co/Al2O3 Cermets Prepared by Wet Chemical Method, J. Am. Ceram. Soc. (2014).
Google Scholar
[7]
B. Zhang, Y. Feng, J. Xiong, et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz, IEEE T. Magn. 42 (2006) 1778-1781.
DOI: 10.1109/tmag.2006.874188
Google Scholar
[8]
S. Kirihara, M.W. Takeda, K. Sakoda, et al. Control of microwave emission from electromagnetic crystals by lattice modifications, Solid state commun. 124 (2004) 135-139.
DOI: 10.1016/s0038-1098(02)00452-0
Google Scholar
[9]
K.L. Yan, R.H. Fan, Z.C. Shi, et al. Negative permittivity behavior and magnetic performance of perovskite La 1− x Sr x MnO 3 at high-frequency, J. ournal of Mater. Chem. C, 6 (2014) 1028-1033.
DOI: 10.1039/c3tc31906g
Google Scholar
[10]
M. Gao , Z.C. Shi, R.H. Fan, et al. High-Frequency Negative Permittivity from Fe/Al2O3 Composites with High Metal Contents, J. Am. Ceram. Soc. 95 (2012) 67-70.
DOI: 10.1111/j.1551-2916.2011.04963.x
Google Scholar
[11]
A.K. Jonscher, Dielectric relaxation in solids, J. Phys. D. Appl. Phys. 32 (1999) R57.
Google Scholar