Photoswitching Characteristics of LiNbO3/ZnO/n-Si Heterojunction

Article Preview

Abstract:

(001)-oriented LiNbO3 (LN) ferroelectric films were grown on (100)-oriented n-type Si substrates using 15 nm-thick ZnO layers as buffers by pulse laser deposition technique and the LN/ZnO/n-Si heterojunctions were fabricated. Obvious photoswitching characteristics to white light were observed when the reverse voltages were applied on the LN/ZnO/n-Si heterojunction. High performance was exhibited, such as a large ON/OFF ratio, short photoresponse time, steady ON or OFF states, and well reversible. The results were discussed in terms of the band diagrams of the LN/ZnO/Si heterojunctions in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-190

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Paz de Araujo, J. D. Cuchiaro, L. D. Mcmillan, et al., Nature 374 (1994) 627-629.

Google Scholar

[2] T. P. Ma, J. P. Han, IEEE Electron Device Lett. 23 (2002) 386-388.

Google Scholar

[3] K. Yao, B.K. Gan, M. Chen, Appl. Phys. Lett. 87 (2005) 212906-1-3.

Google Scholar

[4] T. Choi, S. Lee, Y. J. Choi, et al., Science 324 (2009) 63-66.

Google Scholar

[5] Y. Watanabe, Phys. Rev. B 57 (1998) R5563-R5566.

Google Scholar

[6] H. Yang, H. M. Luo, H. Wang, et al. Appl. Phys. Lett. 92 (2008) 102113-1-3.

Google Scholar

[7] S. M. Guo, Y. G. Zhao, C. M. Xiong, P. L. Lang, Appl. Phys. Lett. 89 (2006) 223506-1-3.

Google Scholar

[8] D. Hunter, K. Lord, T. M. Williams, et al., Appl. Phys. Lett. 89 (2006) 092102-1-3.

Google Scholar

[9] S. M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, 3nd ed., Wiley, New York, (2006).

Google Scholar

[10] G. R. Fox, S. B. Krupanidhi, J. Appl. Phys. 74 (1993) 1949-(1959).

Google Scholar

[11] H. Yang, H. Wang, G. F. Zou, et al., Appl. Phys. Lett. 93 (2008) 142904-1-3.

Google Scholar

[12] Z. Xu, B. Kaczer, J. Johnson, et al., J. Appl. Phys. 96 (2004) 1614-1619.

Google Scholar

[13] L. Pintilie, C. Dragoi, R. Radu, et al., Appl. Phys. Lett. 96 (2010) 012903-1-3.

Google Scholar

[14] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed., Wiley, New York, (2002).

Google Scholar

[15] Z. Guo, D. Zhao, Y. Liu, et al., Appl. Phys. Lett. 93 (2008) 163501-1-3.

Google Scholar

[16] C.T. Lee, Y.L. Chiou, C.S. Lee, IEEE Electron Device Lett. 31 (2010) 1220-1222.

Google Scholar

[17] O. Lopatiuk-Tirpak, L. Chernyak, F. X. Xiu, et al. J. Appl. Phys. 100 (2006) 086101-1-3.

Google Scholar

[18] J. Wu, J. Wang, J. Appl. Phys. 108 (2010) 034102-1-8.

Google Scholar

[19] D.C. Kim, B.O. Jung, J.H. Lee, et al., Nanotech. 26 (2011) 265506-1-8.

Google Scholar