Spray Pyrolysis Synthesis and Luminescence Properties of Spherical Eu3+ Doped SrMoO4 Phosphors

Article Preview

Abstract:

Spherical SrMoO4:Eu3+ phosphors had been prepared by spray pyrolysis. The effect of the total solution concentration on phase structure, microscopic morphology and fluorescent performances of SrMoO4: Eu3+ phosphor have been studied. The results showed that pure SrMoO4 phase can be obtained at different total solution concentration; The luminous intensity of the sample was the strongest at 615nm when the total solution concentration is 0.6M. SrMoO4: Eu3+ phosphor with regular spherical morphology, well dispersion and well fluorescent properties was synthesized successfully by spray pyrolysis method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

208-211

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Xie, X.M. Yuan, S.J. Hai, J.J. Wang, F.X. Wang, L. Li, J. Phys. D: Appl. Phys. 42 (2009) 105.

Google Scholar

[2] Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang, X. Huang, J. Alloys Comp. 390 (2005) 226.

Google Scholar

[3] Y.G. Wang, J.F. Ma, Mater. Sci. Eng. B: Solid 130 (2006) 277.

Google Scholar

[4] L.Y. Zhou, J.S. Wei, J.R. Wu, J. Alloys Comp. 476 (2009) 390.

Google Scholar

[5] Z.Y. Hou, R.T. Chai, M.L. Zhang, C.M. Zhang, P. Chong, Z.H. Xu, G.G. Li, J. Lin, Langmuir 25 (2009) 12340.

Google Scholar

[6] K.G. Sharma, N.S. Singh, Y.R. Devi, N.R. Singh, S.D. Singh, J. Alloys Comp. 556 (2013) 94.

Google Scholar

[7] B. Xia, I.W. Lenggoro, K. Okuyama, Chem. Mater. 14 (2002) 4969.

Google Scholar

[8] Y. Shimomura, N. Kijima, J. Electrochem. Soc. 151 (2004) H192.

Google Scholar

[9] Y.C. Kang, H.S. Roh, S.B. Park, H.D. Park, J. Eur. Ceram. Soc. 22 (2002) 1661.

Google Scholar

[10] Y.V. Yermolayeva, A.V. Tolmachev, M.V. Dobrotvorskaya, O.M. Vovk, J. Alloys Comp. 509 (2011) 5320.

Google Scholar

[11] T.S. Atabaev, H.H.T. Vu, Z.L. Piao, Y.H. Hwang, H.K. Kim, J. Alloys Comp. 541 (2012) 263.

Google Scholar

[12] X. Lin, X.S. Qiao, X.P. Fan, Solid State Sci. 13 (2011) 579.

Google Scholar

[13] T. Thongtem, S. Kungwankunakorna, B. Kuntalue, A. Phuruangrat, S. Thongtem, J. Alloys Comp. 506 (2010) 475.

Google Scholar

[14] P.P. Yang, C.X. Li, W.X. Wang, Z.W. Quan, S.L. Gai, J. Lin, J. Solid State Chem. 182 (2009) 2510.

Google Scholar

[15] Y.F. Liu, S.H. Dai, Y.N. Lu, H.H. Min, Powder Technol. 221 (2012) 412.

Google Scholar

[16] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J. Caruso, M.J. Hampden-Smith, T.T. Kodas, J. Lumin. 75 (1997) 11.

DOI: 10.1016/s0022-2313(96)00096-8

Google Scholar

[17] Y.C. Kang, H.S. Roh, S.B. Park, Adv. Mater. 12 (2000) 451.

Google Scholar

[18] Z. Ci, Y. Wang, J. Zhang, Y. Sun, Physica B. 403 (2008) 670.

Google Scholar

[19] G.K. Liu, B. Jacquier, Berlin: Springer, (2005).

Google Scholar

[20] X. Li, Z.P. Yang, L. Guan, Q.L. Guo, S.F. Huai, P.L. Li, J. Rare Earth. 25 (2007) 706.

Google Scholar