[1]
T. Robinson, G. McMullan, R. Marchant, et al., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol. 77 (2001) 247-255.
DOI: 10.1016/s0960-8524(00)00080-8
Google Scholar
[2]
S. Qadri, A. Ganoe, and Y. Haik, Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles, J. Hazard. Mater. 169 (2009) 318-323.
DOI: 10.1016/j.jhazmat.2009.03.103
Google Scholar
[3]
R. Vinu, and G. Madras, Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-TiO2, Environ. Sci. Technol. 42 (2008) 913-919.
DOI: 10.1021/es0720457
Google Scholar
[4]
J. Cao, B.Y. Xu, H. L. Lin, et al., Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic, properties for organic dye removal, Chem. Eng. J. 185 (2012) 91-99.
DOI: 10.1016/j.cej.2012.01.035
Google Scholar
[5]
Y. M. Cui, Q. F. Jia, H. Q. Li, et al., Photocatalytic activities of Bi2S3/BiOBr nanocomposites synthesized by a facile hydrothermal process, Appl. Surf. Sci. 290 (2014) 233-239.
DOI: 10.1016/j.apsusc.2013.11.055
Google Scholar
[6]
J.T. Zai, X.F. Qian, and K.X. Wang, 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances, CrystEngComm 12 (2012) 1364-1375.
DOI: 10.1039/c1ce05950e
Google Scholar
[7]
J. F. Chao, Z. Xie, X. B. Duan, et al., Visible-light-driven photocatalytic and photoelectrochemical properties of porous SnSx(x=1, 2) architectures, CrystEngComm 14 ( 2012) 3163-3168.
DOI: 10.1039/c2ce06586j
Google Scholar
[8]
R. J. Wei, J. C. Hu, T. F. Zhou, et al., Ultrathin SnS2 nanosheets with exposed {001} facets and enhanced photocatalytic properties, Acta Materialia Vol. 66 (2014) p.163.
DOI: 10.1016/j.actamat.2013.11.076
Google Scholar
[9]
C. Kiruthigaa, C. Manoharan, C. Raju, et al., Solid state synthesis and spectral investigations of nanostructure SnS2, Spectrochim. Acta A 129 (2014) 415-420.
DOI: 10.1016/j.saa.2014.03.088
Google Scholar
[10]
P. Balaz, T, Ohtani, Z. Bastl, et al., Properties and reactivity of mechanochemically synthesized tin sulfides, J. Solid State Chem. 144 (1999) 1-7.
Google Scholar
[11]
T. K. Jia, W. M. Wang, F. Long, et al., Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires, J. Alloys. Compd. 484 (2009) 410-415.
DOI: 10.1016/j.jallcom.2009.04.153
Google Scholar
[12]
T. K. Jia, W. M. Wang, F. Long, et al., Synthesis, Characterization, and photocatalytic activity of Zn- doped SnO2 hierarchical architectures assembled by nanocones, J. Phys. Chem. C. 113 (2009) 970-9077.
DOI: 10.1021/jp9021272
Google Scholar
[13]
T. K. Jia, F. Zhang, X. F. Wang, et al., Novel Zn-doped SnO2 hierarchical architecture: facile synthesis, structural characterization and enhanced photocatalytic property, Key Eng. Mater 512-515 (2012) 334-338.
DOI: 10.4028/www.scientific.net/kem.512-515.334
Google Scholar
[14]
Z. H. Ai, S. C. Lee, Y. Huang, et al., Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification, J. Hazard. Mater. 179 (2010) 141-150.
DOI: 10.1016/j.jhazmat.2010.02.071
Google Scholar
[15]
Y. Ohko, Y. Nakamura, A. Fukuda, et al., Photocatalytic oxidation of nitrogen dioxide with TiO2 thin films under continuous UV-light illumination, J. Phys. Chem. C. 112 (2008) 10502-10508.
DOI: 10.1021/jp802959c
Google Scholar
[16]
M. A. Butler, Hotoelectrolysis and physical properties of the semiconducting Electrode WO3, J. Appl. Phys. 48 (1977) 1914-(1920).
Google Scholar