Thermal Properties of Banana Starch Nanocrystals Prepared by Acid Hydrolysis as Reinforcing Filler

Article Preview

Abstract:

Banana is one of the most important tropical fruits in Thailand. It is available throughout the year, i.e., no specific growing season, resulting to the low cost. All parts of banana plant can be used, particularly its fruit has several adaptable in term of how to eat it. However, banana is ripe and perishable easily. Therefore, it is a potential resource that can be utilized and developed in order to add more value to this raw material. In this work, green banana fruits were used as a raw material for preparing a starch nanocrystal reinforcing filler in bio-nanocomposites. The green banana was extracted into banana starch by using 0.05 N sodium hydroxide solution. The composition of the obtained banana starch contained 90.61% of starch, 18.82% of amylose, 0.19% of protein, 0.11% of ash, and 0.03% of lipid. The banana starch composition exhibited low content of protein, ash, and lipid (<0.5%) indicating that the obtained banana starch was pure enough to be used. After that, starch nanocrystal (SNC) was prepared from banana starch by acid hydrolysis with 3.5 M sulfuric acid and 3.0 M hydrochloric acid at 40°C for 7 and 5 hours, repectively. The obtained banana SNC showed an increase in the degree of crystallinity from 28.03% for native banana starch to 47.13% and 40.15% for banana SNC prepared from sulfuric and hydrochloric acid hydrolysis, respectively. Furthermore, the thermal properties of banana SNC were investigated by differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA) in order to assess thermal stability of banana SNC for using as reinforcing filler in bio-nanocomposite. The decomposition temperature of native banana starch and SNC was in the range of 260-315°C. The gelatinization temperature of banana SNC increased as a result of the increment of its degree of crystallinity when comparing with native starch.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

516-521

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.F. Zeble, Molecules to granules: A comprehensive starch review, Starch/Stärke. 40(1988) 44-50.

DOI: 10.1002/star.19880400203

Google Scholar

[2] T. d.S. Rocha, A.P. d.A. Carneiro, C.M.L. Franco, Effect of enzymatic hydrolysis on some physico chemical properties of root and tuber granular starches, Food Sci. Technol. (Campinas) 30(2010) 544-551.

DOI: 10.1590/s0101-20612010000200039

Google Scholar

[3] D. Liu, Q. Wu, H. Chen, P.R. Cheng, Transitional properties of starch colloid with particle size reduction from micro to nanometer, J. Colloid Interface Sci. 339 (2009) 117-124.

DOI: 10.1016/j.jcis.2009.07.035

Google Scholar

[4] J. Putaux, S. Molina-Boisseau, T. Momaur, A. Dufresne, Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis, Biomacromolecules. 4(2003) 1198-1202.

DOI: 10.1021/bm0340422

Google Scholar

[5] H. Angellier, L. Choisnard, S. Molina-Boisseau, P. Ozil, A. Dufresne, Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology, Biomacromolecules. 5 (2004) 1545-1551.

DOI: 10.1021/bm049914u

Google Scholar

[6] H. Angellier, S. Molina-Boisseau, L. Lebrun, A. Dufresne, Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber, Macromolecules. 38(2005) 3783-3792.

DOI: 10.1021/ma050054z

Google Scholar

[7] H. Angellier, S. Molina-Boisseau, A. Dufresne, Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber, Macromolecules. 38(2005) 9161-9170.

DOI: 10.1021/ma0512399

Google Scholar

[8] H. Angellier, S. Molina-Boisseau, P. Dole, A. Dufresne, Thermoplastic starch-waxy maize starch nanocrystals nanocomposites, Biomacromolecules. 7(2006) 531-539.

DOI: 10.1021/bm050797s

Google Scholar

[9] E. Kristo, C.G. Biliaderis, Physical properties of starch nanocrystal-reinforced pullulan films, Carbohydr. Polym. 68(2007) 146-158.

DOI: 10.1016/j.carbpol.2006.07.021

Google Scholar

[10] Y. Wang, L. Zhang, High-strength waterborne polyurethane reinforced with waxy maize starch nanocrystals, J. Nanosci. Nanotechnol. 8(2008) 5831-5838.

DOI: 10.1166/jnn.2008.256

Google Scholar

[11] G. Chen, M. Wei, J. Chen, J. Huang, A. Dufresne, P.R. Chang, Simultaneous reinforcing and toughening new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals, Polymer 49(2008) 1860-1870.

DOI: 10.1016/j.polymer.2008.02.020

Google Scholar

[12] Y. Wang, H. Tian, L. Zhang, Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane, Carbohydr. Polym. 80(2010) 665-671.

DOI: 10.1016/j.carbpol.2009.10.043

Google Scholar

[13] Y. Chen, X. Cao, P.R. Chang, M.A. Huneault, Comparative study on the films of poly(vinyl alcohol) pea starch nanocrystals and poly(vinyl alcohol) native pea starch, Carbohydr. Polym. 73(2008) 8-17.

DOI: 10.1016/j.carbpol.2007.10.015

Google Scholar

[14] H. Zheng, F. Ai, P.R. Chang, J. Huang, A. Dufresne, Structure and properties of starch nanocrystal-reinforced soy protein plastics, Polym. Compos. 30(2009) 474-480.

DOI: 10.1002/pc.20612

Google Scholar

[15] C. -Y. Lii, S. -M. Chang, Y. -L. Young, Investigation of the Physical and Chemical Properties of Banana Starches, J. Food Sci. 47 (1982) 1493-1497.

DOI: 10.1111/j.1365-2621.1982.tb04968.x

Google Scholar

[16] W. Shujun, Y. Jinglin, G. Wenyuan, P. Jiping, L. Hongyan, Y. Jiugao, Granule Structure Changes in Native Chinese Yam (Dioscorea opposite Thunb var. Anguo) Starch During Acid Hydrolysis, Carbohydr. Polym. 69 (2007) 286-292.

DOI: 10.1016/j.carbpol.2006.10.005

Google Scholar

[17] L. H. Ling, E. M. Osman, J. B. Fernandes, P. J. Reilly, Physical Properties of Starch from Cavendish Banana Fruit, Starch/Stärke 34 (1982) 184-188.

DOI: 10.1002/star.19820340603

Google Scholar

[18] K. N. Walisewski, M. A. Aparicio, L. A. Bello, J. A. Monroy, Changes of Banana Starch by Chemical and Physical Modification, Carbohydr. Polym. 52 (2003) 237-242.

DOI: 10.1016/s0144-8617(02)00270-9

Google Scholar

[19] P. Nimsung, M. Thongngam, O. Naivikul, Compositions, Morphological, and Thermal Properties of Green Banana Flour and Starch, Kasetsart J. (Nat. Sci) 41 (2007) 324-330.

Google Scholar

[20] P. V. Hung, N. T. M. Cham, P. T. T. Truc, Characterization of Vietnamese Banana Starch and Its Resistant Starch Improvement, IFRJ 20 (2013) 205-211.

Google Scholar

[21] N. Lin, J. Huang, P.R. Chang, D.P. Anderson, J. Yu, Preparation, modification, and application of starch nanocrystals in nanomaterials: A review, J nonomater. 2011(2011) 1-13.

DOI: 10.1155/2011/573687

Google Scholar

[22] N. Atichokudom-chai, S. Shobsngob, P. Chinachoti, S. Varavinit, A study of some physicochemical properties of high-crystalline tapioca starch, Starch/Stärke. 53(2001) 577-581.

DOI: 10.1002/1521-379x(200111)53:11<577::aid-star577>3.0.co;2-0

Google Scholar

[23] H. -Y. Kim, J.H. Lee, J. -Y. Kim, W. -J. Lim, S. -T. Lim, Characterization of Nanoparticles prepared by Acid Hydrolysis of Various Starches, Starch/Stärke. 64 (2012) 367-373.

DOI: 10.1002/star.201100105

Google Scholar