The Biomaterial Relevance of Oxytocin in Some Zebrafish Studies

Article Preview

Abstract:

Oxytocin is a nonapeptide hormone that is involved, besides its classical functions, in linking social signals with cognition, behaviors and reward. Also, it seems to have a critical role in the regulation of brain-mediated processes that are strongly relevant to many neuropsychiatric disorders. In this way, in the present paper we will try to describe the most important and modern aspects regarding the relevance of oxytocin administration in various animal models of neuropsychiatric disorders, as well as in human patients. Also, the relevance of zebrafish studies in this context will be extensively discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-293

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Cochran, M. Hill, J. Frazier, The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings, Harv. Rev. Psychiatry. 21 (2013) 219-47.

DOI: 10.1097/hrp.0b013e3182a75b7d

Google Scholar

[2] K. Macdonald, T. Macdonald, The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans, Harv. Rev. Psychiatry. 18 (2010) 1–21.

DOI: 10.3109/10673220903523615

Google Scholar

[3] D. Marazziti, M. Catena Dell'osso, The role of oxytocin in neuropsychiatric disorders, Curr Med Chem. 15 (2008) 698-704.

Google Scholar

[4] D. Feifel, Oxytocin as a potential therapeutic target for schizophrenia and other neuropsychiatric conditions, Neuropsychopharmacology. 37 (2012) 304-5.

DOI: 10.1038/npp.2011.184

Google Scholar

[5] R. Levin, S. Edelman, I. Shalev, P. Ebstein, U. Levy, Brain Protection in Schizophrenia, Mood and Cognitive Disorders - The Role of Oxytocin in Neuropsychiatric Disorders, Concepts and Mechanisms. 1 (2010) 611-635.

DOI: 10.1007/978-90-481-8553-5_20

Google Scholar

[6] S. Jesso, D. Morlog, S. Ross, M. Pell, A. Kertesz, E. Finger, The effects of oxytocin on social cognition and behaviour in frontotemporal dementia, Brain. 134 (2011) 2493-501.

DOI: 10.1093/brain/awr171

Google Scholar

[7] L. Hanson, J. Fine, A. Svitak, K. Faltesek, Intranasal administration of CNS therapeutics to awake mice, J. Vis. Exp. 1 (2013) 74.

DOI: 10.3791/4440

Google Scholar

[8] M. Uchida, T. Katoh, M. Mori, T. Maeno, Y. Morimoto, H. Natsume, Intranasal administration of milnacipran in rats: evaluation of the transport of drugs to the systemic circulation and central nervous system. Biol. Pharm. Bull. 34 (2011) 740-7.

DOI: 10.1248/bpb.34.740

Google Scholar

[9] T. Schneider, R. Przewłocki, Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology. 30 (2005) 80-9.

DOI: 10.1038/sj.npp.1300518

Google Scholar

[10] R. Kumar, J. Seema, Sodium Orthovanadate Treatment Reverses Methionine Administration Induced Schizophrenia Like Behavior in Rats, Iran Pharm Ther. 6 (2007) 67-70.

Google Scholar

[11] A. Becker, G. Grecksch, Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Test of predictive validity, Prog. Neuro. Biol. Psy. 28 (2004) 1267-77.

DOI: 10.1016/j.pnpbp.2004.06.019

Google Scholar

[12] R. Zhang, J. He, S. Zhu, H. Zhang, Q. Tan, X. Li, Myelination deficit in a phencyclidine-induced neurodevelopmental model of schizophrenia. Brain Res. 21 (2012) 136-43.

DOI: 10.1016/j.brainres.2012.06.003

Google Scholar

[13] R. Lefter, D. Cojocaru, A. Ciobica, M. Paulet, I. Serban, E. Anton, Aspects of animal models for the major neuropsychiatric disorders, Arch. of Bio. Sci. 66 (2014) 105-1115.

DOI: 10.2298/abs1403105l

Google Scholar

[14] C. Modahl C, Green L, Fein D. Plasma oxytocin levels in autistic children. Biol. Psychiatry. 43 (1998) 270–277.

DOI: 10.1016/s0006-3223(97)00439-3

Google Scholar

[15] E. Hollander, S. Novotny, M. Hanratty, Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders, Neuropsychopharmacology. 28 (2003) 193–198.

DOI: 10.1038/sj.npp.1300021

Google Scholar

[16] C. Epperson, C. McDougle, L. Price. Intranasal oxytocin in obsessive-compulsive disorder, Biol. Psychiatry. 40 (1996) 547–549.

DOI: 10.1016/0006-3223(96)00120-5

Google Scholar

[17] A. Guastella, A. Howard, M. Dadds, P. Mitchell , D. Carson, A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder, Psychoneuroendocrinology. 34 (2009) 917–923.

DOI: 10.1016/j.psyneuen.2009.01.005

Google Scholar

[18] G. Scantamburlo, M. Hansenne, S. Fuchs S, Plasma oxytocin levels and anxiety in patients with major depression, Psychoneuroendocrinology. 32 (2007) 407–410.

DOI: 10.1016/j.psyneuen.2007.01.009

Google Scholar

[19] A. Frasch, T. Zetzsche, A Steiger, G. Jirikowski, Reduction of plasma oxytocin levels in patients suffering from major depression, Adv. Exp. Med. Biol. 395 (1995) 257–258.

Google Scholar

[20] L. van Londen, J. Goekoop, G. van Kempen, Plasma levels of arginine vasopressin elevated in patients with major depression, Neuropsychopharmacology. 17 (1997) 284–292.

DOI: 10.1016/s0893-133x(97)00054-7

Google Scholar

[21] U. Anderberg, K. Uvnas-Moberg, Plasma oxytocin levels in female fibromyalgia syndrome patients. Zeitschrift fur Rheumatologie. 59 (2000) 373–379.

DOI: 10.1007/s003930070045

Google Scholar

[22] H. Beckmann, R. Lang, W. Gattaz, Vasopressin—oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls, Psychoneuroendocrinology. 10 (2005) 187–19.

DOI: 10.1016/0306-4530(85)90056-3

Google Scholar

[23] D. Glovinsky, K. Kalogeras, D. Kirch, R. Suddath, R. Wyatt, Cerebrospinal fluid oxytocin concentration in schizophrenic patients does not differ from control subjects and is not changed by neuroleptic medication, Schizophr. Res. 11 (1994).

DOI: 10.1016/0920-9964(94)90021-3

Google Scholar

[24] Z. Iqbal, Z. Rahman, F. Muhammad, S. Awais, S. Sadaf, Oxytocin induced oxidative stress in lactating Bubalis bubalis (Nili Ravi), BMC. Veterinary Research. 9 (2013) 169.

DOI: 10.1186/1746-6148-9-169

Google Scholar

[25] T. Mostafa, L. Rashed, I. Osman, M. Marawan, Seminal plasma oxytocin and oxidative stress levels in infertile men with varicocele, Andrologia. 47 (2015) 209-13.

DOI: 10.1111/and.12248

Google Scholar

[26] T. Manoj, M. Murugan, Influence of Demoxytocin on the Behavioural Actions of Melatonin, Journal of Experimental Sciences. 2 (2011) 7-9.

Google Scholar

[27] S. Wu, M. Jia, Y. Ruan, Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry. 58 (2005) 74–7.

DOI: 10.1016/j.biopsych.2005.03.013

Google Scholar

[28] E. Lerer, S. Levi, S. Salomon, A. Darvasi, B. Ebstein, Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition, Mol. Psychiatry. 13 (2008) 980–8.

DOI: 10.1038/sj.mp.4002087

Google Scholar

[29] C. Yrigollen, S. Han, A. Kochetkova A, Genes controlling affiliative behavior as candidate genes for autism, Biol. Psychiatry. 63 (2008) 911–6.

DOI: 10.1016/j.biopsych.2007.11.015

Google Scholar

[30] R. Souza, P. Ismail, H. Meltzer, J. Kennedy, Variants in the oxytocin gene and risk for schizophrenia, Schizophr. Res. 121 (2010) 279–80.

DOI: 10.1016/j.schres.2010.04.019

Google Scholar

[31] B. Costa, S. Pini, P. Gabelloni P, Oxytocin receptor polymorphisms and adult attachment style in patients with depression, Psychoneuroendocrinology. 34 (2009) 1506–14.

DOI: 10.1016/j.psyneuen.2009.05.006

Google Scholar

[32] G. Gimpl, F. Fahrenholz F, The oxytocin receptor system: structure, function, and regulation, Physiological Reviews. 81 (2001) 629–83.

DOI: 10.1152/physrev.2001.81.2.629

Google Scholar

[33] H. Zingg, S. Laporte, The oxytocin receptor, Trends in Endocrinology and Metabolism. 14 (2003) 222–7.

DOI: 10.1016/s1043-2760(03)00080-8

Google Scholar

[34] J. Silk, S. Alberts, J. Altmann, Social bonds of female baboons enhance infant survival. Science. 302 (2003) 1231–1234.

DOI: 10.1126/science.1088580

Google Scholar

[35] Z. Hall, A. De Serrano, F. Rodd, V. Tropepe, Casting a wider fish net on animal models in neuropsychiatric research. Prog. Neuropsychopharmacol. Biol. Psychiatry. 55 (2014) 7-15.

DOI: 10.1016/j.pnpbp.2014.04.003

Google Scholar