[1]
D. Cochran, M. Hill, J. Frazier, The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings, Harv. Rev. Psychiatry. 21 (2013) 219-47.
DOI: 10.1097/hrp.0b013e3182a75b7d
Google Scholar
[2]
K. Macdonald, T. Macdonald, The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans, Harv. Rev. Psychiatry. 18 (2010) 1–21.
DOI: 10.3109/10673220903523615
Google Scholar
[3]
D. Marazziti, M. Catena Dell'osso, The role of oxytocin in neuropsychiatric disorders, Curr Med Chem. 15 (2008) 698-704.
Google Scholar
[4]
D. Feifel, Oxytocin as a potential therapeutic target for schizophrenia and other neuropsychiatric conditions, Neuropsychopharmacology. 37 (2012) 304-5.
DOI: 10.1038/npp.2011.184
Google Scholar
[5]
R. Levin, S. Edelman, I. Shalev, P. Ebstein, U. Levy, Brain Protection in Schizophrenia, Mood and Cognitive Disorders - The Role of Oxytocin in Neuropsychiatric Disorders, Concepts and Mechanisms. 1 (2010) 611-635.
DOI: 10.1007/978-90-481-8553-5_20
Google Scholar
[6]
S. Jesso, D. Morlog, S. Ross, M. Pell, A. Kertesz, E. Finger, The effects of oxytocin on social cognition and behaviour in frontotemporal dementia, Brain. 134 (2011) 2493-501.
DOI: 10.1093/brain/awr171
Google Scholar
[7]
L. Hanson, J. Fine, A. Svitak, K. Faltesek, Intranasal administration of CNS therapeutics to awake mice, J. Vis. Exp. 1 (2013) 74.
DOI: 10.3791/4440
Google Scholar
[8]
M. Uchida, T. Katoh, M. Mori, T. Maeno, Y. Morimoto, H. Natsume, Intranasal administration of milnacipran in rats: evaluation of the transport of drugs to the systemic circulation and central nervous system. Biol. Pharm. Bull. 34 (2011) 740-7.
DOI: 10.1248/bpb.34.740
Google Scholar
[9]
T. Schneider, R. Przewłocki, Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology. 30 (2005) 80-9.
DOI: 10.1038/sj.npp.1300518
Google Scholar
[10]
R. Kumar, J. Seema, Sodium Orthovanadate Treatment Reverses Methionine Administration Induced Schizophrenia Like Behavior in Rats, Iran Pharm Ther. 6 (2007) 67-70.
Google Scholar
[11]
A. Becker, G. Grecksch, Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Test of predictive validity, Prog. Neuro. Biol. Psy. 28 (2004) 1267-77.
DOI: 10.1016/j.pnpbp.2004.06.019
Google Scholar
[12]
R. Zhang, J. He, S. Zhu, H. Zhang, Q. Tan, X. Li, Myelination deficit in a phencyclidine-induced neurodevelopmental model of schizophrenia. Brain Res. 21 (2012) 136-43.
DOI: 10.1016/j.brainres.2012.06.003
Google Scholar
[13]
R. Lefter, D. Cojocaru, A. Ciobica, M. Paulet, I. Serban, E. Anton, Aspects of animal models for the major neuropsychiatric disorders, Arch. of Bio. Sci. 66 (2014) 105-1115.
DOI: 10.2298/abs1403105l
Google Scholar
[14]
C. Modahl C, Green L, Fein D. Plasma oxytocin levels in autistic children. Biol. Psychiatry. 43 (1998) 270–277.
DOI: 10.1016/s0006-3223(97)00439-3
Google Scholar
[15]
E. Hollander, S. Novotny, M. Hanratty, Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders, Neuropsychopharmacology. 28 (2003) 193–198.
DOI: 10.1038/sj.npp.1300021
Google Scholar
[16]
C. Epperson, C. McDougle, L. Price. Intranasal oxytocin in obsessive-compulsive disorder, Biol. Psychiatry. 40 (1996) 547–549.
DOI: 10.1016/0006-3223(96)00120-5
Google Scholar
[17]
A. Guastella, A. Howard, M. Dadds, P. Mitchell , D. Carson, A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder, Psychoneuroendocrinology. 34 (2009) 917–923.
DOI: 10.1016/j.psyneuen.2009.01.005
Google Scholar
[18]
G. Scantamburlo, M. Hansenne, S. Fuchs S, Plasma oxytocin levels and anxiety in patients with major depression, Psychoneuroendocrinology. 32 (2007) 407–410.
DOI: 10.1016/j.psyneuen.2007.01.009
Google Scholar
[19]
A. Frasch, T. Zetzsche, A Steiger, G. Jirikowski, Reduction of plasma oxytocin levels in patients suffering from major depression, Adv. Exp. Med. Biol. 395 (1995) 257–258.
Google Scholar
[20]
L. van Londen, J. Goekoop, G. van Kempen, Plasma levels of arginine vasopressin elevated in patients with major depression, Neuropsychopharmacology. 17 (1997) 284–292.
DOI: 10.1016/s0893-133x(97)00054-7
Google Scholar
[21]
U. Anderberg, K. Uvnas-Moberg, Plasma oxytocin levels in female fibromyalgia syndrome patients. Zeitschrift fur Rheumatologie. 59 (2000) 373–379.
DOI: 10.1007/s003930070045
Google Scholar
[22]
H. Beckmann, R. Lang, W. Gattaz, Vasopressin—oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls, Psychoneuroendocrinology. 10 (2005) 187–19.
DOI: 10.1016/0306-4530(85)90056-3
Google Scholar
[23]
D. Glovinsky, K. Kalogeras, D. Kirch, R. Suddath, R. Wyatt, Cerebrospinal fluid oxytocin concentration in schizophrenic patients does not differ from control subjects and is not changed by neuroleptic medication, Schizophr. Res. 11 (1994).
DOI: 10.1016/0920-9964(94)90021-3
Google Scholar
[24]
Z. Iqbal, Z. Rahman, F. Muhammad, S. Awais, S. Sadaf, Oxytocin induced oxidative stress in lactating Bubalis bubalis (Nili Ravi), BMC. Veterinary Research. 9 (2013) 169.
DOI: 10.1186/1746-6148-9-169
Google Scholar
[25]
T. Mostafa, L. Rashed, I. Osman, M. Marawan, Seminal plasma oxytocin and oxidative stress levels in infertile men with varicocele, Andrologia. 47 (2015) 209-13.
DOI: 10.1111/and.12248
Google Scholar
[26]
T. Manoj, M. Murugan, Influence of Demoxytocin on the Behavioural Actions of Melatonin, Journal of Experimental Sciences. 2 (2011) 7-9.
Google Scholar
[27]
S. Wu, M. Jia, Y. Ruan, Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry. 58 (2005) 74–7.
DOI: 10.1016/j.biopsych.2005.03.013
Google Scholar
[28]
E. Lerer, S. Levi, S. Salomon, A. Darvasi, B. Ebstein, Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition, Mol. Psychiatry. 13 (2008) 980–8.
DOI: 10.1038/sj.mp.4002087
Google Scholar
[29]
C. Yrigollen, S. Han, A. Kochetkova A, Genes controlling affiliative behavior as candidate genes for autism, Biol. Psychiatry. 63 (2008) 911–6.
DOI: 10.1016/j.biopsych.2007.11.015
Google Scholar
[30]
R. Souza, P. Ismail, H. Meltzer, J. Kennedy, Variants in the oxytocin gene and risk for schizophrenia, Schizophr. Res. 121 (2010) 279–80.
DOI: 10.1016/j.schres.2010.04.019
Google Scholar
[31]
B. Costa, S. Pini, P. Gabelloni P, Oxytocin receptor polymorphisms and adult attachment style in patients with depression, Psychoneuroendocrinology. 34 (2009) 1506–14.
DOI: 10.1016/j.psyneuen.2009.05.006
Google Scholar
[32]
G. Gimpl, F. Fahrenholz F, The oxytocin receptor system: structure, function, and regulation, Physiological Reviews. 81 (2001) 629–83.
DOI: 10.1152/physrev.2001.81.2.629
Google Scholar
[33]
H. Zingg, S. Laporte, The oxytocin receptor, Trends in Endocrinology and Metabolism. 14 (2003) 222–7.
DOI: 10.1016/s1043-2760(03)00080-8
Google Scholar
[34]
J. Silk, S. Alberts, J. Altmann, Social bonds of female baboons enhance infant survival. Science. 302 (2003) 1231–1234.
DOI: 10.1126/science.1088580
Google Scholar
[35]
Z. Hall, A. De Serrano, F. Rodd, V. Tropepe, Casting a wider fish net on animal models in neuropsychiatric research. Prog. Neuropsychopharmacol. Biol. Psychiatry. 55 (2014) 7-15.
DOI: 10.1016/j.pnpbp.2014.04.003
Google Scholar