[1]
L. Tsikritzis, G. Pekridis, R. Tsikritzi, E. Amanatidou, Dispersion and bioaccumulation of trace pollutants emitted by Coal-fired power plants in West Macedonia, Greece, Fresenius Environ. Bull., 22, 2, 343-350 (2013).
Google Scholar
[2]
V.G. Karayannis, A.K. Moutsatsou, E.L. Katsika, Recycling of lignite highly-calcareous fly ash into nickel-based composites, Fresenius Environ. Bull., 21, 8b, 2375-2380 (2012).
Google Scholar
[3]
A. Badanoiu, G. Voicu, Influence of raw materials characteristics and processing parameters on the strength of geopolymer cements based on fly ash, Environ. Eng. Manag. J., 10, 5, 673-681 (2011).
DOI: 10.30638/eemj.2011.091
Google Scholar
[4]
L. Zhang, Production of bricks from waste materials – a review, Constr. Build. Mater. 47 (2013) 643-655.
Google Scholar
[5]
V.G. Karayannis, A.K. Moutsatsou, E.L. Katsika, Synthesis of microwave-sintered ceramics from lignite fly and bottom ashes, J. Ceram. Process. Res., 14, 1, 45-50 (2013).
Google Scholar
[6]
N.U. Kockal, Utilisation of different types of coal fly ash in the production of ceramic tiles, Bol. Soc. Esp. Ceram. Vidr., 51, 5, 297-304 (2012).
DOI: 10.3989/cyv.412012
Google Scholar
[7]
K. Komnitsas, D. Zaharaki, V. Perdikatsis, Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers, J. Hazard. Mat., 161, 2-3, 760-768 (2009).
DOI: 10.1016/j.jhazmat.2008.04.055
Google Scholar
[8]
J.H. Kim, K.G. Lee, Y. Kim, S.K. Kang, Efflorescence and leaching behavior of metal ions for EAF dust-clay based bricks, Mat. Sci. Forum, 449-452 (2004) 241-244.
DOI: 10.4028/www.scientific.net/msf.449-452.241
Google Scholar
[9]
A.T. Machado, F.R. Valenzuela-Diaz, C.A.C. De Souza, L.R.P. De Andrade Lima, Structural ceramics made with clay and steel dust pollutants, Appl. Clay Sci., 51 (2011) 503-506.
DOI: 10.1016/j.clay.2011.01.004
Google Scholar
[10]
X. Spiliotis, K. Ntampegliotis, D. Kasiteropoulou, S. Lamprakopoulos, K. Lolos, V. Karayannis, G. Papapolymerou, Valorization of mill scale waste by its incorporation in fired clay bricks, Key Eng. Mater., 608 (2014) 8-13.
DOI: 10.4028/www.scientific.net/kem.608.8
Google Scholar
[11]
V. Mymrin, R.A.C. Ribeiro, K. Alekseev, E. Zelinskaya, N. Tolmacheva, R. Catai, Environment friendly ceramics from hazardous industrial wastes, Ceram. Int. 40 (2014) 9427-9437.
DOI: 10.1016/j.ceramint.2014.02.014
Google Scholar
[12]
P. Porreca, E. Furlani, L. Fedrizzi, S. Bruckner, D. Minichelli, F. Tubaro, A. Bachiorrini, F. Andreatta, S. Maschio, Sintered ceramics from special waste incinerator ashes and steelmaking slag, Ind. Ceram., 27 (2007) 197-203.
Google Scholar
[13]
S. Kumar, R. Kumar, A. Bandopadhyay, Innovative methodologies for the utilization of wastes from metallurgical and allied industries, Res. Conserv. Recycl., 48 (2006) 301-314.
DOI: 10.1016/j.resconrec.2006.03.003
Google Scholar
[14]
V. Karayannis, X. Spiliotis, E. Papastergiadis, K. Ntampegliotis, G. Papapolymerou, P. Samaras, Contribution to the sustainable management of resources by novel combination of industrial solid residues into red ceramics, Bull. Environ. Contam. Toxicol., 94, 3, 345-351 (2015).
DOI: 10.1007/s00128-014-1446-8
Google Scholar
[15]
T. Sofilić, B. Bertić, V. Šimunić-Mežnarić, I. Brnardić, Soil pollution as a result of temporary steel scrap storage at the melt shop, Ecol. Balc., 5 (2013) 21-30.
Google Scholar
[16]
Information on http: /www. aeiforos. gr.
Google Scholar