[1]
C. Leyens, M. Peters, Titanium and Titanium Alloys. Wiley-VCH Verlag GmbH & Co., (2003).
Google Scholar
[2]
A. Bloyce, P. Morton, T. Bell, ASM Handbook, vol. 5, ASM International, Materials Park, OH, (1994).
Google Scholar
[3]
Q.Y. Wang, J.Y. Berard, C. Bathias, et al., Gigacycle fatigue of ferrous alloys. Fatigue Fract Engng Mater Struct, 22(8) (1999): 667-672.
DOI: 10.1046/j.1460-2695.1999.00185.x
Google Scholar
[4]
Y. Cao, F. Ernst, G.M. Michal, Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature. Acta Mater, 51 (2003): 4171–81.
DOI: 10.1016/s1359-6454(03)00235-0
Google Scholar
[5]
X.J. Cao, J. Jin, X.L. Xu, et al., Time duration effect of plasma nitriding on fatigue behavior of S45C steel. Journal of Sichuan University (Engineering Science Edition), 46(2) (2014): 192-197.
Google Scholar
[6]
N. Tsuji, S. Tanaka, T. Takasugi, Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti–6Al–4V alloy. Surf Coat Tech, 203 (2009): 1400-1405.
DOI: 10.1016/j.surfcoat.2008.11.013
Google Scholar
[7]
E. Maawad, Y. Sano, L. Wagner, et al., Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Mater Sci Eng A, 536 (2012): 82– 91.
DOI: 10.1016/j.msea.2011.12.072
Google Scholar
[8]
S. Curtis, E.R. de los Rios, C.A. Rodopoulos, et al., Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminium alloys. Int J Fatigue, 25 (2003): 59–66.
DOI: 10.1016/s0142-1123(02)00049-x
Google Scholar
[9]
K.K. Liu, M.R. Hill, The effects of laser peening and shot peening on fretting fatigue in Ti−6Al−4V coupons. Tribol Int, 42(9) (2009): 1250−1262.
DOI: 10.1016/j.triboint.2009.04.005
Google Scholar
[10]
B.N. Mordyuk, M.O. Iefimov, G.I. Prokepenko, et al., Structure, microhardness and damping characteristics of Al matrix composite reinforced with AlCuFe or Ti using ultrasonic impact peening [J]. Surf Coat Tech, 204(9−10) (2010): 1590−1598.
DOI: 10.1016/j.surfcoat.2009.10.009
Google Scholar
[11]
G.Q. Chen, Y. Jiao, T.Y. Tian, et al., Effect of wet shot peening on Ti−6Al−4V alloy treated by ceramic beads. Trans. Nonferrous Met. Soc. China, 24 (2014): 690−696.
DOI: 10.1016/s1003-6326(14)63112-5
Google Scholar
[12]
Q.Y. Wang, C. Bathias, Fatigue characterization of a spheroidal graphite cast iron under ultrasonic loading. J Mater Sci, 39(2) (2004): 687-689.
DOI: 10.1023/b:jmsc.0000011532.41231.c8
Google Scholar
[13]
D.X. Liu, J.W. He, Effect of shot peening factors on fretting fatigue resistance titanium alloy. Acta Metall Sin, 37(2) (2001): 156-160.
Google Scholar
[14]
A.T. Vielma, V. Llaneza, F.J. Belzunce, Shot peening intensity optimization to increase the fatigue life of a quenched and tempered structural steel. Procedia Engineering, 74 ( 2014 ): 273 – 278.
DOI: 10.1016/j.proeng.2014.06.261
Google Scholar
[15]
A.L. Wen, S.W. Wang, R.M. Ren, et al., Effect of combined shot peening on fatigue limit of TC4 which have different microstructure. Applied Mechanics and Materials, 55-57 (2011): 1138-1141.
DOI: 10.4028/www.scientific.net/amm.55-57.1138
Google Scholar