[1]
M. Peters, J. Kumpfert, C. H. Ward, C. Leyens, Titanium Alloys for Aerospace Applications, Advanced Engineering Materials No. 6 (2003), 419-427.
DOI: 10.1002/adem.200310095
Google Scholar
[2]
H. Mughrabi, On `multi-stage` fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue, Fatigue and fracture of engineering materials and structures 25 (2002), 755-764.
DOI: 10.1046/j.1460-2695.2002.00550.x
Google Scholar
[3]
Q.Y. Wang, C. Bathias, N. Kawagoishi, C. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue 24 (2002), 1269-1274.
DOI: 10.1016/s0142-1123(02)00037-3
Google Scholar
[4]
J.H. Zuo, Z.G. Wang, E.H. Han, Effect of microstructure on ultra-high cycles fatigue behavior of Ti-6Al-4V, Materials Science and Engineering A 473 (2008), 147-152.
DOI: 10.1016/j.msea.2007.04.062
Google Scholar
[5]
A.J. McEvily, T. Nakamura, H. Oguma, K. Yamashita, H. Matsunaga, M. Endo, On the mechanism of very high cycle fatigue in Ti-6Al-4V, ScriptaMaterialia 59 (2008), 1207-1209.
DOI: 10.1016/j.scriptamat.2008.08.012
Google Scholar
[6]
R. K Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, R.O. Ritchie, Influence of Microstructure on High-Cycle Fatigue of Ti-6Al-4V: Bimidal vs. Lamellar Structures, Metallurgical and materials transactions 33A (2002), 899-918.
DOI: 10.1007/s11661-002-0160-z
Google Scholar
[7]
K.S. Chan, Y. -D. Lee, Effects of Deformation-Induced Constraint on High-Cycle Fatigue in Ti Alloys with a Duplex Microstructure, Metallurgical and materials transactions 39A (2008), 1665-1675.
DOI: 10.1007/s11661-008-9540-3
Google Scholar
[8]
C. Bathias, Piezoelectrical fatigue testing machines and devices, International Journal of Fatigue 28 (2006), 1438-1445.
DOI: 10.1016/j.ijfatigue.2005.09.020
Google Scholar
[9]
S. Heinz, G. Wagner, D. Eifler, Innovative piezoelectrical testing facility for fatigue experiments in the VHCF regime, Proceedings of the Fifth International Conference on Very High Cycle Fatigue (2011), 479-484.
DOI: 10.3139/120.110395
Google Scholar
[10]
W. P. Manson, Piezoelectrical Crystals and their Application to Ultrasonics, Van Nostrand, New York, (1950).
Google Scholar
[11]
M. Koster, H. Nutz, W. Freeden, D. Eifler, Measuring techniques for the very high cycle fatigue behaviour of high strength steel atultrasonicfrequencies. International Journal of Materials Research, Volume 103 (2012), HanserVerlag, 105-112.
DOI: 10.3139/146.110623
Google Scholar
[12]
S. Nishijima, K. Kanazawa, Stepwise S-N curve and fish-eye failure in gigacycle fatigue, Fatigue FractEngng Mater Struct 22 (1999), 601-607.
DOI: 10.1046/j.1460-2695.1999.00206.x
Google Scholar
[13]
Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Oxford, (2002).
Google Scholar
[14]
B. Schwilling, C. Fleck, D. Eifler, Cyclic deformation behavior of Ti6Al4V and TiAl6Nb in different quasi-physiological media, Mat. -wiss. u. Werkstofftech. No. 33 (2002), 453-458.
DOI: 10.1002/1521-4052(200208)33:8<453::aid-mawe453>3.0.co;2-c
Google Scholar
[15]
D. F. Neal, P. A. Blenkinsop, Internal fatigue origins in α-β ti-alloys, ActaMetallurgica No. 24 (1976), 59-63.
Google Scholar