Energy Dissipation in Very High Cycle Fatigue for Polycrystalline Pure Copper and Armco Iron

Article Preview

Abstract:

This paper aims at a deeper understanding of microplastic mechanisms leading to crack initiation in ductile metals in Very High Cycle Fatigue (VHCF). Fatigue tests were conducted using an ultrasonic technique at loading frequency of 20 kHz. The microplastic mechanisms are revealed via observations of slip markings at the specimen surface and self-heating measurements due to intrinsic dissipation. Pure copper and Armco iron (which contains a very low amount of carbon) were investigated. Both are single-phase ductile materials but the crystallographic structure of copper is face-centered cubic while it is body centered cubic for Armco iron. A good correlation was found between slip markings initiation and dissipation for both materials. The dissipation for both materials is of the same order of magnitude but the location, the morphology and the evolution over cycles of slip markings were found different.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-46

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Blanche, A. Chrysochoos, N. Ranc, V. Favier, Dissipation Assessments During Dynamic Very High Cycle Fatigue Tests, Experimental Mechnanics (2014) 1-11.

DOI: 10.1007/s11340-014-9857-3

Google Scholar

[2] H. Mughrabi, On multi-stage fatigue life diagram and the relevant life controlling mechanisms in ultra-high cycle fatigue, 25 (2002) 755-764.

DOI: 10.1046/j.1460-2695.2002.00550.x

Google Scholar

[3] C. Bathias, P. Paris, Gigacycle fatigue in mechanical practice, Dekker, M. CRC Press, (2004).

Google Scholar

[4] C. Bathias, Piezoelectric fatigue testing machines and devices, International Journal of Fatigue, 28 (2006) 1438-1445.

DOI: 10.1016/j.ijfatigue.2005.09.020

Google Scholar

[5] N. L. Phung, V. Favier, N. Ranc, F. Vales, H. Mughrabi, Very high cycle fatigue of copper: Evolution, morphology and locations of surface slip markings, International Journal of Fatigue, 63 (2014) 68-77.

DOI: 10.1016/j.ijfatigue.2014.01.007

Google Scholar

[6] S. Stanzl-Tschegg, H. Mughrabi, B. Schönbauer, Life-time and cyclic slip of copper in the VHCF-regime, International Journal of Fatigue, 29 (2007) 2050-(2059).

DOI: 10.1016/j.ijfatigue.2007.03.010

Google Scholar

[7] C. Wang, D. Wagner, Q. Y. Wang, C. Bathias, Gigacycle fatigue initiation mechanism in Armco iron, International Journal of Fatigue, 45 (2012) 91-97.

DOI: 10.1016/j.ijfatigue.2012.06.005

Google Scholar

[8] P. Germain, Q. S. Nguyen, P. Suquet, Continuum Thermomechanics, Journal of Applied Mechanics-Transactions of the Asme, 50 (1983) 1010-1020.

DOI: 10.1115/1.3167184

Google Scholar

[9] T. Boulanger, A. Chrysochoos, C. Mabru, A. Galtier, Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels, International Journal of Fatigue, 26 (2004) 221-229.

DOI: 10.1016/s0142-1123(03)00171-3

Google Scholar

[10] B. Berthel, A. Chrysochoos, B. Wattrisse, A. Galtier, Infrared Image Processing for the Calorimetric Analysis of Fatigue Phenomena, Experimental Mechanics, 28 (2008) 79-90.

DOI: 10.1007/s11340-007-9092-2

Google Scholar

[11] C. Doudard, S. Calloch, F. Hild, S. Roux, Identification of heat source fields from infra-red thermography: determination of self-heating, in a dual-phase steel by using a dog bone sample 42 (2010) 55-62.

DOI: 10.1016/j.mechmat.2009.09.005

Google Scholar

[12] S. E. Stanzl-Tschegg, B. Schönbauer, Mechanisms of strain localization, crack initiation and fracture of polycrystalline copper in the VHCF regime, International Journal of Fatigue, 32 (2010) 886-893.

DOI: 10.1016/j.ijfatigue.2009.03.016

Google Scholar

[13] H. W. Höppel, L. May, M. Prell, M. Göken, Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime., International Journal of Fatigue, 33 (2011) 10-18.

DOI: 10.1016/j.ijfatigue.2010.04.013

Google Scholar

[14] J. V. Cartensen, H. Mayer, Very high cycle fatigue of thin walled tubes made from austenitic stainless steel, Fatigue of Engineering materials and structures, 25 (2002) 837-844.

DOI: 10.1046/j.1460-2695.2002.00554.x

Google Scholar

[15] C. Wang, A. Blanche, D. Wagner, A. Chrysochoos, C. Bathias, Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron, International Journal of Fatigue, 58 (2014) 152-157.

DOI: 10.1016/j.ijfatigue.2013.02.009

Google Scholar

[16] H. Mughrabi, Z. Wang, Deformation of polycrystals: Mechanism and microstructures, in Proceesings of second Riso Inte. r Sympos. on Metall. Mater. Sci., (1981).

Google Scholar

[17] S. Iida, K. Ohno, H. Kamimae, H. Kumagai, Tables of physical constants, 1992, p.24.

Google Scholar

[18] N. L. Phung, V. Favier, N. Ranc, Evaluating Schmid criterion for predicting preferential locations of persistent slip markings obtained after very high cycle fatigue for polycrystalline pure copper, International Journal of Fatigue (2015).

DOI: 10.1016/j.ijfatigue.2015.03.009

Google Scholar

[19] J. Polak, A. Vasek, Fatigue damage in polycrystalline copper below the fatigue limit, Butterworth-Heinemann publisher, (1994).

DOI: 10.1016/0142-1123(94)90453-7

Google Scholar

[20] P. Neumann, A. Tönnessen, Crack initiation at grain boundaries in FCC materials - Strength of metals and alloys, vol. 1, Oxford: Pergamon Press, 1988, p.748.

DOI: 10.1016/b978-0-08-034804-9.50116-9

Google Scholar

[21] P. Peralta, C. Laird, T. E. Mitchell, Fatigue fracture at copper bicrystal interfaces: fractography, Materials Science and Engineering A, 264 (1999) 215-231.

DOI: 10.1016/s0921-5093(98)01088-0

Google Scholar

[22] L. Llanes, C. Laird, Materials and Engineering Sciences A, 157 (1992) 21-27.

Google Scholar

[23] N. Thompson, N. Wadsworth, N. Louat, The origin of fatigue fracture in copper, Philosophical Magazine, 1 (1956) 113-126.

DOI: 10.1080/14786435608238086

Google Scholar

[24] A. Pineau, S. Antolovitch, Fatigue intergranulaire, in Joints de grain et plasticité cristalline, sous la direction de Louisette Priester. Collection Traité, vol. Chapter 5, Directed by Louisette Priester, Traité Mécanique et Ingénierie des Matériaux. Hermès–Lavoisier: Série Matériaux, pp.255-288, (2011).

DOI: 10.1051/ptox/2009005

Google Scholar

[25] P. Zhang, S. Qu, Q. Duan, S. Wu, S. Li, Z. Wang, Low-cycle fatigue cracking mechanisms in fcc crystalline materials, Philosophical Magazine, 91 (2010) 229-249.

DOI: 10.1080/14786435.2010.518169

Google Scholar

[26] Y. H. Kim, C. Laird, Crack nucleation and stage I propagation in high strain fatigue - II. Mechanism, Acta Metallurgica, 26 (1978) 777-787.

DOI: 10.1016/0001-6160(78)90028-7

Google Scholar

[27] H. M. Ledbette, R. P. Reed, Elastic properrties of metals and alloys: iron, nickel, iron-nickel alloys, Journal of Physics and Chemistry, 2 (1973) 531-617.

DOI: 10.1063/1.3253127

Google Scholar

[28] R. Munier, Etude de la fatigue des aciers laminés à partir de l'auto-échauffement sous sollicitation cyclique: essais, observations, modélisation et influence de la pré-déformation plastique, Université de Bretagne, Brest, (2012).

DOI: 10.1051/metal/2011045

Google Scholar

[29] J. W. Provan, Z. H. Zhai, Fatigue crack initiation and stage I propagation in polycrystalline materials I: Micromechanisms, International Journal of fatigue, 13 (1991) 99-109.

DOI: 10.1016/0142-1123(91)90001-f

Google Scholar

[30] L. Cretegny, A. Saxena, AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper, Acta Materialia, 49 (2001) 3755-3765.

DOI: 10.1016/s1359-6454(01)00271-3

Google Scholar