[1]
M. Jono et al., Handbook for Fatigue Design, Yokendo Ltd., Tokyo (1995) 1–5.
Google Scholar
[2]
JSMS, Database on Fatigue Strength of Metallic Materials, The Society of Materials Science, Japan, Kyoto (1996).
Google Scholar
[3]
K. Shiozawa, T. Sakai et al., Databook on Fatigue Strength of Metallic Materials, The Society of Materials Science, Japan and Elsevier B. V., Netherland (1996).
Google Scholar
[4]
T. Sakai, T. Sakai, K. Okada, M. Furuichi, I. Nishikawa and A. Sugeta, Statistical fatigue properties of SCM435 steel in ultra-long-life regime based on JSMS database on fatigue strength of metallic materials, International Journal of Fatigue, Vol. 28, (2006).
DOI: 10.1016/j.ijfatigue.2005.09.018
Google Scholar
[5]
K. Mukoyama, K. Hanaki, K. Okada, A. Sakaida et al., Statistical estimation of S-N curves for structural carbon steels using their static mechanical properties, Journal of Materials Science, Japan, Vol. 64, (2015) in Press.
Google Scholar
[6]
T. Sakai (Chair of Editorial Committee) et al., Standard evaluation method of fatigue reliability for metallic materials -Standard regression method of S-N curves-, JSMS-SD-11-07, JSMS, (2007).
Google Scholar
[7]
C. Bathias and P. C. Paris, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, New York (2005).
Google Scholar
[8]
Edited by T. Sakai et al., International Journal of Fatigue, Vol. 28, No. 11 (Special Issue on VHCF-3), (2006).
Google Scholar
[9]
Edited by J. E. Allison, J.W. Jones et al., Proceedings of VHCF-4, TMS, USA (2007).
Google Scholar
[10]
Edited by C. Berger and H. -J. Christ, Proceedings of VHCF-5, DVM, Berlin, Germany (2011).
Google Scholar
[11]
Edited by Q.Y. Wang and Y. Hong, Proceedings of VHCF-6, Chengdu, China (2014), CD-ROM.
Google Scholar
[12]
T. Sakai, Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use", Journal of Solid Mechanics and Materials Engineering, Vol. 3, No. 3, (2009), 425-439.
DOI: 10.1299/jmmp.3.425
Google Scholar
[13]
Q.Y. Wang, C. Bathias, N. Kawagoishi, Q. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue, Vol. 24, (2002), pp.1269-11274.
DOI: 10.1016/s0142-1123(02)00037-3
Google Scholar
[14]
Q.Y. Wang, N. Kawagoishi and Q. Chen, Fatigue and fracture behaviour of structural Al-alloys up to very long life regime, International Journal of Fatigue, Vol. 28, (2006), pp.1572-1576.
DOI: 10.1016/j.ijfatigue.2005.09.017
Google Scholar
[15]
A. Zhao, J. Xie, C. Sun, Z. Lei and Y. Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel, International Journal of Fatigue, Vol. 38, (2012), pp.46-56.
DOI: 10.1016/j.ijfatigue.2011.11.014
Google Scholar
[16]
Y. Hong, Z. Lei, C. Sun and A. Zhao, Propencities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels, International Journal of Fatigue, Vol. 58, (2014), pp.144-151.
DOI: 10.1016/j.ijfatigue.2013.02.023
Google Scholar
[17]
T. Sakai, Y. Sato and N. Oguma, Characteristic S-N properties of high-carbon-chromium- bearing steel under axial loading in long-life fatigue, Fatigue and Fracture of Engineering Materials & Structures, Vol. 25, (2002), pp.765-773.
DOI: 10.1046/j.1460-2695.2002.00574.x
Google Scholar
[18]
T. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, M. Nakajima and T. Nakamura, Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime, International Journal of Fatigue, Vol. 32, No. 3 (2010).
DOI: 10.1016/j.ijfatigue.2009.08.001
Google Scholar