[1]
UNEP Sustainable Buildings & Construction Initiative (2009).
Google Scholar
[2]
M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials., Building and Environment 40. 3 (2005): 353-366.
DOI: 10.1016/j.buildenv.2004.05.013
Google Scholar
[3]
A.M. Papadopoulos, State of the art in thermal insulation materials and aims for future developments., Energy and Buildings 37. 1 (2005): 77-86.
DOI: 10.1016/j.enbuild.2004.05.006
Google Scholar
[4]
S.R. Karade, Cement-bonded composites from lignocellulosic wastes., Construction and Building Materials 24. 8 (2010): 1323-1330.
DOI: 10.1016/j.conbuildmat.2010.02.003
Google Scholar
[5]
S. Panyakaew, Satta, and S. Fotios. Agricultural Waste Materials as Thermal Insulation for Dwellings in Thailand: Preliminary Results., (2008).
Google Scholar
[6]
S.P. Raut, R. V. Ralegaonkar, and S. A. Mandavgane. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks., Construction and Building Materials 25. 10 (2011): 4037-4042.
DOI: 10.1016/j.conbuildmat.2011.04.038
Google Scholar
[7]
S Panyakaew, and S. Fotios. New thermal insulation boards made from coconut husk and bagasse., Energy and Buildings 43. 7 (2011): 1732-1739.
DOI: 10.1016/j.enbuild.2011.03.015
Google Scholar
[8]
B. Yesilata, Y. Isıker, and P. Turgut. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces., Construction and Building Materials 23. 5 (2009): 1878-1882.
DOI: 10.1016/j.conbuildmat.2008.09.014
Google Scholar
[9]
H.S. Dweik, M. M. Ziara, and M. S. Hadidoun. Enhancing concrete strength and thermal insulation using thermoset plastic waste., International Journal of Polymeric Materials 57. 7 (2008): 635-656.
DOI: 10.1080/00914030701551089
Google Scholar
[10]
A. Briga-Sá et al. Textile waste as an alternative thermal insulation building material solution., Construction and Building Materials 38 (2013): 155-160.
DOI: 10.1016/j.conbuildmat.2012.08.037
Google Scholar
[11]
M Vasilache, M Pruteanu, and C. Avram. Use of waste materials for thermal insulation in buildings., Environmental Engg. and Management J 9 (2011): 1275-1280.
DOI: 10.30638/eemj.2010.165
Google Scholar
[12]
S.R. Karade, M. Irle M, K. Maher, F. Caldiera. Cork granules as lightweight aggregate., In Sustainable Concrete Construction: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK on 9-11 September, 2002, vol. 2, p.253. Thomas Telford, (2002).
DOI: 10.1680/scc.31777.0026
Google Scholar
[13]
F. Hernandez-Olivares, M.R. Bollati, M. del Rio, and B. Parga-Landa., Development cork-gypsum composites for building applications, Construction & Building Materials, 13, 1999, pp.179-186.
DOI: 10.1016/s0950-0618(99)00021-5
Google Scholar
[14]
P. Jove´, M.A. Olivella, L. Cano, Study of the variability in chemical composition of bark layers of Quercus suber L. from different production areas. Bio Resources 6 (2), 2011, 1806-1815.
DOI: 10.15376/biores.6.2.1806-1815
Google Scholar
[15]
N. Beja, and H. Pereira. Variation of the yield and quality of cork stoppers as a function of the porosity of cork planks that are used as raw material. 4th National Forestry Congress, Évora, Portugal, 28-30 November, (2001).
Google Scholar
[16]
N. Cordeiro, M.N. Belgacem, A. Gandini A. and C. Pascoal Neto, Urethanes and polyurethanes from suberin 2: synthesis and characterisation, Industrial Crops and Products, Vol. 10, 1999, pp.1-10.
DOI: 10.1016/s0926-6690(98)00029-6
Google Scholar
[17]
D.R. McIlveen-Wright, B.C. Williams, J.T. McMullan, R.H. Evans, and I. Gulyurtlu. Some energy and waste management options for cork processing plant. Environmental Waste Management,. 3(4), 2000, pp.189-200.
Google Scholar
[18]
L.J. Gibson, K.E. Easterling, and M.F. Ashby. The structure and mechanics of cork. Proc. Royal Society of London Ser. A-Math. Phys. Eng. Sci., 377(1769), 1981, pp.99-117.
Google Scholar
[19]
M.A.D. Oliveira & L.D. Oliveira L.D., The Cork; Groupo Amorim, 1991, 159 pp.
Google Scholar
[20]
H. Pereira, Chemical composition and variability of cork from Quercus suber L., Wood science and technology 22. 3 (1988): 211-218.
DOI: 10.1007/bf00386015
Google Scholar
[21]
E. Conde, et al. Chemical characterization of reproduction cork from Spanish Quercus suber., Journal of wood chemistry and technology 18. 4 (1998): 447-469.
DOI: 10.1080/02773819809349592
Google Scholar
[22]
A.M.A. Pintor, et al. Use of cork powder and granules for the adsorption of pollutants: a review., Water research 46. 10 (2012): 3152-3166.
DOI: 10.1016/j.watres.2012.03.048
Google Scholar
[23]
J. Graça, and H. Pereira. Cork suberin: a glyceryl based polyester., Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 51. 3 (1997): 225-234.
DOI: 10.1515/hfsg.1997.51.3.225
Google Scholar
[24]
A.M. Gil, M. H. Lopes, C. Pascoal Neto, and P. T. Callaghan. An NMR microscopy study of water absorption in cork., Journal of materials science 35, no. 8 (2000): 1891-(1900).
DOI: 10.1023/a:1004749932170
Google Scholar
[25]
M.F. Ashby. Cork. In: A.P. Schniewind, (Ed), Concise Encyclopaedia of Wood and Wood-Based Materials. Pergamon Press, Oxford. 1989. pp.66-69.
Google Scholar
[26]
E.M. Fernandes, , V. M. Correlo, J.A.M. Chagas, J. F. Mano, and R. L. Reis. Cork based composites using polyolefin's as matrix: morphology and mechanical performance., Composites Science and Technology 70, no. 16 (2010): 2310-2318.
DOI: 10.1016/j.compscitech.2010.09.010
Google Scholar
[27]
L.J. Gibson, and M.F. Ashby. Cellular Solids: Structure and Properties. Cambridge University Press, (1999).
Google Scholar
[28]
M.A. Fortes, and M. E. Rosa. Growth stresses and strains in cork., Wood science and technology 26. 4 (1992): 241-258.
DOI: 10.1007/bf00200160
Google Scholar
[29]
S.P. Silva, M. A. Sabino, E. M. Fernandes, V. M. Correlo, L. F. Boesel, and R. L. Reis. Cork: properties, capabilities and applications., International Materials Reviews 50, no. 6 (2005): 345-365.
DOI: 10.1179/174328005x41168
Google Scholar
[30]
ASTM C332-99 Standard Specification for Lightweight Aggregates for Insulating Concrete. American Standards for Testing and Materials. United States. (2000).
Google Scholar
[31]
L. Gil, Cork composites: a review., Materials 2, no. 3 (2009): 776-789.
Google Scholar
[32]
M. E. Rosa, and M. A. Fortes. Deformation and fracture of cork in tension., Journal of Materials Science 26. 2 (1991): 341-348.
DOI: 10.1007/bf00576525
Google Scholar
[33]
A. Mestre, Design Cork for future, innovation and sustainability., Lisboa, Portugal: Susdesign (2008).
Google Scholar
[34]
M.E. Rosa, and H. Pereira. The effect of long term treatment at 100 C–150 C on structure, chemical composition and compression behaviour of cork., Holzforschung 48. 3 (1994): 226-232.
DOI: 10.1515/hfsg.1994.48.3.226
Google Scholar
[35]
A.P.O. Carvalho, Cork as a lightweight partition material. Economical and acoustical analyses., Proceedings of the CIB W89 Beijing International Conference–Beijing, China. (1996).
Google Scholar
[36]
M. Flores, M. E. Rosa, C. Y. Barlow, M. A. Fortes, and M. F. Ashby. Properties and uses of consolidated cork dust., Journal of materials science 27, no. 20 (1992): 5629-5634.
DOI: 10.1007/bf00541634
Google Scholar
[37]
L. Gil, & C.C. Manuel. New cork powder particleboards with thermoplastic binding agents., Wood science and technology 27. 3 (1993): 173-182.
DOI: 10.1007/bf00192814
Google Scholar
[38]
M. A. Aziz, C. K. Murphy, and S. D. Ramaswamy. Lightweight concrete using cork granules., International Journal of Cement Composites and Lightweight Concrete 1. 1 (1979): 29-33.
DOI: 10.1016/0262-5075(79)90006-x
Google Scholar
[39]
S.R. Karade, M.A. Irle, K. Maher. Physico-chemical aspects of the use of cork in cementitious composites., In: Proceedings of the Fifth International Conference on the Development of Wood Science, Wood Technology and Forestry, ICWSF 2001, Ljubljana, Slovenija, 5-7 September 2001., pp.97-106.
Google Scholar
[40]
S.R. Karade, M.A. Irle, K. Maher. Influence of granule properties and concentration on cork-cement compatibility., Holz als Roh-und Werkstoff 64. 4 (2006): 281-286.
DOI: 10.1007/s00107-006-0103-2
Google Scholar
[41]
S.R. Karade. An Investigation of Cork-Cement Composites. Ph.D. Thesis, Buckinghamshire Chilterns University College, Brunel University, UK, (2003) p.212.
Google Scholar
[42]
A.G. Loudon and E.F. Stacy, The thermal and acoustic properties of lightweight concretes, Structural Concrete, (March/April 1966), pp.58-95.
Google Scholar
[43]
T.A. Holm. Lightweight Concrete and Aggregates. Standard Technical Publication 169C, American Society for Testing and Materials. (1994).
Google Scholar
[44]
S. Aroni, G.J. de Groot, M.J. Robinson, G. Svanholm and F.H. Wittman (Eds. ). 1993. Autoclaved Aerated Concrete: Properties, Testing and Design; RILEM Recommended Practice. E & FN Spon, London. 404 pp.
Google Scholar
[45]
A.M. Neville Properties of Concrete 4th ed., Pearson Education, Harlow, (1995). 844 pages.
Google Scholar