Potential of Cork Cement Composite as a Thermal Insulation Material

Article Preview

Abstract:

The growing environmental concern throughout the globe has led architects & engineers to design energy efficient buildings. Consequently, they are looking for building materials that can reduce the energy consumption in buildings to maintain the comfort level. Use of proper thermal insulating materials can reduce the energy required for heating or cooling of the buildings. Presently mineral wool and various foams are used for this purpose. Efforts are being made to use wastes in making thermal insulation materials so that the impact on environment can be further reduced. Cork granules are obtained as waste from the cork processing industries that make ‘bottle stoppers’ as a main product. These granules have a low density and could be used as lightweight aggregates for making concrete with low thermal conductivity. This article describes the physico-mechanical properties of lightweight cementitious composites made using cork granules. Further, environmental benefits of their application in thermal insulation of buildings has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-29

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] UNEP Sustainable Buildings & Construction Initiative (2009).

Google Scholar

[2] M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials., Building and Environment 40. 3 (2005): 353-366.

DOI: 10.1016/j.buildenv.2004.05.013

Google Scholar

[3] A.M. Papadopoulos, State of the art in thermal insulation materials and aims for future developments., Energy and Buildings 37. 1 (2005): 77-86.

DOI: 10.1016/j.enbuild.2004.05.006

Google Scholar

[4] S.R. Karade, Cement-bonded composites from lignocellulosic wastes., Construction and Building Materials 24. 8 (2010): 1323-1330.

DOI: 10.1016/j.conbuildmat.2010.02.003

Google Scholar

[5] S. Panyakaew, Satta, and S. Fotios. Agricultural Waste Materials as Thermal Insulation for Dwellings in Thailand: Preliminary Results., (2008).

Google Scholar

[6] S.P. Raut, R. V. Ralegaonkar, and S. A. Mandavgane. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks., Construction and Building Materials 25. 10 (2011): 4037-4042.

DOI: 10.1016/j.conbuildmat.2011.04.038

Google Scholar

[7] S Panyakaew, and S. Fotios. New thermal insulation boards made from coconut husk and bagasse., Energy and Buildings 43. 7 (2011): 1732-1739.

DOI: 10.1016/j.enbuild.2011.03.015

Google Scholar

[8] B. Yesilata, Y. Isıker, and P. Turgut. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces., Construction and Building Materials 23. 5 (2009): 1878-1882.

DOI: 10.1016/j.conbuildmat.2008.09.014

Google Scholar

[9] H.S. Dweik, M. M. Ziara, and M. S. Hadidoun. Enhancing concrete strength and thermal insulation using thermoset plastic waste., International Journal of Polymeric Materials 57. 7 (2008): 635-656.

DOI: 10.1080/00914030701551089

Google Scholar

[10] A. Briga-Sá et al. Textile waste as an alternative thermal insulation building material solution., Construction and Building Materials 38 (2013): 155-160.

DOI: 10.1016/j.conbuildmat.2012.08.037

Google Scholar

[11] M Vasilache, M Pruteanu, and C. Avram. Use of waste materials for thermal insulation in buildings., Environmental Engg. and Management J 9 (2011): 1275-1280.

DOI: 10.30638/eemj.2010.165

Google Scholar

[12] S.R. Karade, M. Irle M, K. Maher, F. Caldiera. Cork granules as lightweight aggregate., In Sustainable Concrete Construction: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK on 9-11 September, 2002, vol. 2, p.253. Thomas Telford, (2002).

DOI: 10.1680/scc.31777.0026

Google Scholar

[13] F. Hernandez-Olivares, M.R. Bollati, M. del Rio, and B. Parga-Landa., Development cork-gypsum composites for building applications, Construction & Building Materials, 13, 1999, pp.179-186.

DOI: 10.1016/s0950-0618(99)00021-5

Google Scholar

[14] P. Jove´, M.A. Olivella, L. Cano, Study of the variability in chemical composition of bark layers of Quercus suber L. from different production areas. Bio Resources 6 (2), 2011, 1806-1815.

DOI: 10.15376/biores.6.2.1806-1815

Google Scholar

[15] N. Beja, and H. Pereira. Variation of the yield and quality of cork stoppers as a function of the porosity of cork planks that are used as raw material. 4th National Forestry Congress, Évora, Portugal, 28-30 November, (2001).

Google Scholar

[16] N. Cordeiro, M.N. Belgacem, A. Gandini A. and C. Pascoal Neto, Urethanes and polyurethanes from suberin 2: synthesis and characterisation, Industrial Crops and Products, Vol. 10, 1999, pp.1-10.

DOI: 10.1016/s0926-6690(98)00029-6

Google Scholar

[17] D.R. McIlveen-Wright, B.C. Williams, J.T. McMullan, R.H. Evans, and I. Gulyurtlu. Some energy and waste management options for cork processing plant. Environmental Waste Management,. 3(4), 2000, pp.189-200.

Google Scholar

[18] L.J. Gibson, K.E. Easterling, and M.F. Ashby. The structure and mechanics of cork. Proc. Royal Society of London Ser. A-Math. Phys. Eng. Sci., 377(1769), 1981, pp.99-117.

Google Scholar

[19] M.A.D. Oliveira & L.D. Oliveira L.D., The Cork; Groupo Amorim, 1991, 159 pp.

Google Scholar

[20] H. Pereira, Chemical composition and variability of cork from Quercus suber L., Wood science and technology 22. 3 (1988): 211-218.

DOI: 10.1007/bf00386015

Google Scholar

[21] E. Conde, et al. Chemical characterization of reproduction cork from Spanish Quercus suber., Journal of wood chemistry and technology 18. 4 (1998): 447-469.

DOI: 10.1080/02773819809349592

Google Scholar

[22] A.M.A. Pintor, et al. Use of cork powder and granules for the adsorption of pollutants: a review., Water research 46. 10 (2012): 3152-3166.

DOI: 10.1016/j.watres.2012.03.048

Google Scholar

[23] J. Graça, and H. Pereira. Cork suberin: a glyceryl based polyester., Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 51. 3 (1997): 225-234.

DOI: 10.1515/hfsg.1997.51.3.225

Google Scholar

[24] A.M. Gil, M. H. Lopes, C. Pascoal Neto, and P. T. Callaghan. An NMR microscopy study of water absorption in cork., Journal of materials science 35, no. 8 (2000): 1891-(1900).

DOI: 10.1023/a:1004749932170

Google Scholar

[25] M.F. Ashby. Cork. In: A.P. Schniewind, (Ed), Concise Encyclopaedia of Wood and Wood-Based Materials. Pergamon Press, Oxford. 1989. pp.66-69.

Google Scholar

[26] E.M. Fernandes, , V. M. Correlo, J.A.M. Chagas, J. F. Mano, and R. L. Reis. Cork based composites using polyolefin's as matrix: morphology and mechanical performance., Composites Science and Technology 70, no. 16 (2010): 2310-2318.

DOI: 10.1016/j.compscitech.2010.09.010

Google Scholar

[27] L.J. Gibson, and M.F. Ashby. Cellular Solids: Structure and Properties. Cambridge University Press, (1999).

Google Scholar

[28] M.A. Fortes, and M. E. Rosa. Growth stresses and strains in cork., Wood science and technology 26. 4 (1992): 241-258.

DOI: 10.1007/bf00200160

Google Scholar

[29] S.P. Silva, M. A. Sabino, E. M. Fernandes, V. M. Correlo, L. F. Boesel, and R. L. Reis. Cork: properties, capabilities and applications., International Materials Reviews 50, no. 6 (2005): 345-365.

DOI: 10.1179/174328005x41168

Google Scholar

[30] ASTM C332-99 Standard Specification for Lightweight Aggregates for Insulating Concrete. American Standards for Testing and Materials. United States. (2000).

Google Scholar

[31] L. Gil, Cork composites: a review., Materials 2, no. 3 (2009): 776-789.

Google Scholar

[32] M. E. Rosa, and M. A. Fortes. Deformation and fracture of cork in tension., Journal of Materials Science 26. 2 (1991): 341-348.

DOI: 10.1007/bf00576525

Google Scholar

[33] A. Mestre, Design Cork for future, innovation and sustainability., Lisboa, Portugal: Susdesign (2008).

Google Scholar

[34] M.E. Rosa, and H. Pereira. The effect of long term treatment at 100 C–150 C on structure, chemical composition and compression behaviour of cork., Holzforschung 48. 3 (1994): 226-232.

DOI: 10.1515/hfsg.1994.48.3.226

Google Scholar

[35] A.P.O. Carvalho, Cork as a lightweight partition material. Economical and acoustical analyses., Proceedings of the CIB W89 Beijing International Conference–Beijing, China. (1996).

Google Scholar

[36] M. Flores, M. E. Rosa, C. Y. Barlow, M. A. Fortes, and M. F. Ashby. Properties and uses of consolidated cork dust., Journal of materials science 27, no. 20 (1992): 5629-5634.

DOI: 10.1007/bf00541634

Google Scholar

[37] L. Gil, & C.C. Manuel. New cork powder particleboards with thermoplastic binding agents., Wood science and technology 27. 3 (1993): 173-182.

DOI: 10.1007/bf00192814

Google Scholar

[38] M. A. Aziz, C. K. Murphy, and S. D. Ramaswamy. Lightweight concrete using cork granules., International Journal of Cement Composites and Lightweight Concrete 1. 1 (1979): 29-33.

DOI: 10.1016/0262-5075(79)90006-x

Google Scholar

[39] S.R. Karade, M.A. Irle, K. Maher. Physico-chemical aspects of the use of cork in cementitious composites., In: Proceedings of the Fifth International Conference on the Development of Wood Science, Wood Technology and Forestry, ICWSF 2001, Ljubljana, Slovenija, 5-7 September 2001., pp.97-106.

Google Scholar

[40] S.R. Karade, M.A. Irle, K. Maher. Influence of granule properties and concentration on cork-cement compatibility., Holz als Roh-und Werkstoff 64. 4 (2006): 281-286.

DOI: 10.1007/s00107-006-0103-2

Google Scholar

[41] S.R. Karade. An Investigation of Cork-Cement Composites. Ph.D. Thesis, Buckinghamshire Chilterns University College, Brunel University, UK, (2003) p.212.

Google Scholar

[42] A.G. Loudon and E.F. Stacy, The thermal and acoustic properties of lightweight concretes, Structural Concrete, (March/April 1966), pp.58-95.

Google Scholar

[43] T.A. Holm. Lightweight Concrete and Aggregates. Standard Technical Publication 169C, American Society for Testing and Materials. (1994).

Google Scholar

[44] S. Aroni, G.J. de Groot, M.J. Robinson, G. Svanholm and F.H. Wittman (Eds. ). 1993. Autoclaved Aerated Concrete: Properties, Testing and Design; RILEM Recommended Practice. E & FN Spon, London. 404 pp.

Google Scholar

[45] A.M. Neville Properties of Concrete 4th ed., Pearson Education, Harlow, (1995). 844 pages.

Google Scholar