[1]
O.V. Krylov, Heterogeneous catalysis, IKC Academkniga, Moscow (Akademkniga, Moskva – in Russian), (2004).
Google Scholar
[2]
G. Ertl, H. Knozinger, J. Weitkamp Handbook of Heterogeneous Catalysis, Wiley-VCH, (2008).
Google Scholar
[3]
Lectures of Industrial catalysis, ed. by A.F. Noskov, Kalvis, Moscow (Kalvis, Moskva – in Russian), (2005).
Google Scholar
[4]
A.S. Ivanova Aluminum oxide and systems based on it: Properties and applications, Kinetics and Catalysis, 53 (2012) 425-439.
Google Scholar
[5]
S.C. Lee, Y.M. Kwon, H.J. Chae, S.Y. Jung, J.B. Lee, C.K. Ryu, C.K. Yi, J.C. Kima Improving regeneration properties of potassium-based alumina sorbents for carbon dioxide capture from flue gas, Fuel 104 (2013) 882-885.
DOI: 10.1016/j.fuel.2012.05.037
Google Scholar
[6]
E.C. Rupp, E.J. Granite, D.C. Stanko Catalytic formation of carbonyl sulfide during warm gas clean-up of simulated coal-derived fuel gas with Pd/γ-Al2O3 sorbents, Fuel 92 (2012) 211-215.
DOI: 10.1016/j.fuel.2011.06.055
Google Scholar
[7]
J. Chen, H. Wang, S. Feng, H. Ma, D. Deng, S. Xu Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics, Ceramics International 37 (2011) 989-993.
DOI: 10.1016/j.ceramint.2010.11.020
Google Scholar
[8]
T. Isobe, A. Ooyama, M. Shimizu, A. Nakajima Pore size control of Al2O3 ceramics using two-step sintering, Ceramics International 38 (2012) 787-793.
DOI: 10.1016/j.ceramint.2011.08.005
Google Scholar
[9]
M.C. Alvarez-Galvan, R.M. Navarro, F. Rosa, Y. Briceño, M.A. Ridao, J.L.G. Fierro Hydrogen production for fuel cell by oxidative reforming of diesel surrogate: Influence of ceria and/or lanthana over the activity of Pt/Al2O3 catalysts / Fuel 87 (2008).
DOI: 10.1016/j.fuel.2008.03.003
Google Scholar
[10]
L.S. Carvalho, K.C.S. Conceicao, V.A. Mazzieri, P. Reyes, C.L. Pieck, M. do Carmo Rangel Pt–Re–Ge/Al2O3 catalysts for n-octane reforming: Influence of the order of addition of the metal precursors, Applied Catalysis A: General 419–420 (2012).
DOI: 10.1016/j.apcata.2012.01.023
Google Scholar
[11]
X. Liu, X. Li, Z. Yan Facile route to prepare bimodal mesoporous γ-Al2O3 as support for highly active CoMo-based hydrodesulfurization catalyst, Applied Catalysis B: Environmental 121–122 (2012) 50-56.
DOI: 10.1016/j.apcatb.2012.03.024
Google Scholar
[12]
Ø. Borg, N. Hammer, S. Eri, O. Lindva, R. Myrstad, E. Blekkan, M. Rønning, E. Rytter, A. Holmen Fischer–Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes, Catalysis Today 142 (2009).
DOI: 10.1016/j.cattod.2009.01.012
Google Scholar
[13]
M.L. Ferreira, E. Rueda A theoretical study on n-butane isomerization on supported Fe/γ-Al2O3 and SO4/Fe/γ-Al2O3 model catalysts, Computational Materials Science 27 (2003) 289-296.
DOI: 10.1016/s0927-0256(02)00464-0
Google Scholar
[14]
D. Shee, A. Sayari Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts, Applied Catalysis A: General 389 (2010) 155-164.
DOI: 10.1016/j.apcata.2010.09.013
Google Scholar
[15]
N.A. Pakhomov, V.V. Molchanov, B.P. Zolotovskii, V.I. Nadtochii, L.A. Isupova, S.F. Tikhov, V.N. Kashkin, I.V. Kharina, V.A. Balashov, Yu. Yu. Tanashev, and O. A. Parakhin The Development of Catalysts for Dehydrogenation of Lower C3–C4 Paraffins Using the Products of Gibbsite Thermal Activation, Catalysis in Industry 2 (2010).
DOI: 10.1134/s2070050410020091
Google Scholar