Hydrothermal Synthesis of Nanocrystalline Titanium Dioxide for Use as a Photoanode of DSSCs

Article Preview

Abstract:

Nanocrystalline TiO2 powder was synthesized using microwave-assisted hydrothermal treatment of titanium oxysulfate in the presence of NH4F. X-ray powder diffraction analysis and Raman spectroscopy were used to determine phase composition and particle size of obtained titanium dioxide. The studies using methods of TEM and EDX spectroscopy have shown that synthesized TiO2 powder is a promising functional material for fabrication of photoanode of dye-sensitized solar cells (DSSCs).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-161

Citation:

Online since:

October 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ye, X. Wen, M. Wang, et al., Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Materials Today 18 (2015) 155-162.

DOI: 10.1016/j.mattod.2014.09.001

Google Scholar

[2] H. Snaith, Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells, Adv. Funct. Mater. 20 (2010) 13-19.

DOI: 10.1002/adfm.200901476

Google Scholar

[3] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev. 110 (2010) 6595-6663.

DOI: 10.1021/cr900356p

Google Scholar

[4] T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, et al., A2-quinolinecarboxylate-substituted ruthenium(II) complex as a new type of sensitizer foe dye-sensitized solar cells, Inorganica Chimica Acta 362 (2009) 2519-2522.

DOI: 10.1016/j.ica.2008.10.019

Google Scholar

[5] M. M. Lee, J. Teuscher, Ts. Miyasaka, T.N. Murakami, H. J. Snaith, Efficient hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskite, Science 338 (2012) 643-647.

DOI: 10.1126/science.1228604

Google Scholar

[6] Nam-Gyu Park, Perovskite solar cells: an emerging photovoltaic technology, Materials Today 18 (2015) 65-72.

DOI: 10.1016/j.mattod.2014.07.007

Google Scholar

[7] Hao Wang, Zhiguang Guo, Shimin Wang, Weimin Liu, One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells, Thin Solid Films 558 (2014) 1-19.

DOI: 10.1016/j.tsf.2014.01.056

Google Scholar

[8] F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, Y. -B. Cheng, Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2Beads for High-Efficiency Dye-Sensitized Solar Cells, Adv. Funct. Mater. 20 (2010) 1301-1308.

DOI: 10.1002/adfm.200902218

Google Scholar

[9] Aurelien Du Pasquier, Mattew Stewart, Timothy Spitler, Mike Coleman, Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes, Solar Energy Materials & Solar Cells, 93 (2009) 528-535.

DOI: 10.1016/j.solmat.2008.10.029

Google Scholar

[10] X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications, Chem. Rev. 2007. 107. 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[11] K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications J. Photochem. Photobiol. C. 2012. 13. 169-189.

Google Scholar

[12] D.A. Matolygina, A.E. Baranchikov, V.K. Ivanov, Yu.D. Tret'yakov. Synthesis of Superfine Titania via HighTemperature Hydrolysis of Titanium(IV) Bis(ammonium lactato) Dihydroxide, Dokl. Chemistry, 2011, 441, 361-364.

DOI: 10.1134/s0012500811120019

Google Scholar

[13] V.G. Kessler. Synthesis of superfine titania via high-temperature hydrolysis of titanium(IV) bis(ammonium lactato) dihydroxide, J. Sol-Gel Sci. Tech. 2013. 68. 464-470.

DOI: 10.1134/s0012500811120019

Google Scholar

[14] A.E. Baranchikov, V.K. Ivanov, Yu.D. Tret'yakov. Hydrothermal Microwave Synthesis of Nanocrystalline AnataseDoklady Chem. 2012. 447. 241-243.

Google Scholar

[15] G.A. Seisenbaeva, G. Daniel, J. -M. Nedelec, V.G. Kessler. Solution equilibrium behind the room-temperature synthesis of nanocrystalline titanium dioxide, Nanoscale. 2013. 5. 3330-3336.

DOI: 10.1039/c3nr34068f

Google Scholar

[16] A.A. Sadovnikov, A.E. Baranchikov, Y.V. Zubavichus, O.S. Ivanova, V.Y. Murzin, V.V. Kozik, V.K. Ivanov, Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment, J. Photochem. Photobiol. A 303 (2015).

DOI: 10.1016/j.jphotochem.2015.01.010

Google Scholar

[17] Howard, C. J.; Sabine, T. M.; Dickson, F. Structural and thermal parameters for rutile and anatase, Acta Crystallogr. Sec. B, 47 (1991) 462-468.

DOI: 10.1107/s010876819100335x

Google Scholar

[18] Ohsaka, T. Temperature Dependence of the Raman Spectrum in Anatase TiO2, J. Phys. Soc. Jpn. 48 (1980) 1661-1665.

Google Scholar

[19] Weirich, T.E.; Winterer, M.; Seifried, S.; Mayer, J., Structure of nanocrystalline anatase solved and refined from electron powder data, Acta Crystallographica A 58 (2002) 308-315.

DOI: 10.1107/s0108767302005007

Google Scholar