[1]
M. Ye, X. Wen, M. Wang, et al., Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Materials Today 18 (2015) 155-162.
DOI: 10.1016/j.mattod.2014.09.001
Google Scholar
[2]
H. Snaith, Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells, Adv. Funct. Mater. 20 (2010) 13-19.
DOI: 10.1002/adfm.200901476
Google Scholar
[3]
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev. 110 (2010) 6595-6663.
DOI: 10.1021/cr900356p
Google Scholar
[4]
T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, et al., A2-quinolinecarboxylate-substituted ruthenium(II) complex as a new type of sensitizer foe dye-sensitized solar cells, Inorganica Chimica Acta 362 (2009) 2519-2522.
DOI: 10.1016/j.ica.2008.10.019
Google Scholar
[5]
M. M. Lee, J. Teuscher, Ts. Miyasaka, T.N. Murakami, H. J. Snaith, Efficient hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskite, Science 338 (2012) 643-647.
DOI: 10.1126/science.1228604
Google Scholar
[6]
Nam-Gyu Park, Perovskite solar cells: an emerging photovoltaic technology, Materials Today 18 (2015) 65-72.
DOI: 10.1016/j.mattod.2014.07.007
Google Scholar
[7]
Hao Wang, Zhiguang Guo, Shimin Wang, Weimin Liu, One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells, Thin Solid Films 558 (2014) 1-19.
DOI: 10.1016/j.tsf.2014.01.056
Google Scholar
[8]
F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, Y. -B. Cheng, Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2Beads for High-Efficiency Dye-Sensitized Solar Cells, Adv. Funct. Mater. 20 (2010) 1301-1308.
DOI: 10.1002/adfm.200902218
Google Scholar
[9]
Aurelien Du Pasquier, Mattew Stewart, Timothy Spitler, Mike Coleman, Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes, Solar Energy Materials & Solar Cells, 93 (2009) 528-535.
DOI: 10.1016/j.solmat.2008.10.029
Google Scholar
[10]
X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev. 2007. 107. 2891-2959.
DOI: 10.1021/cr0500535
Google Scholar
[11]
K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications J. Photochem. Photobiol. C. 2012. 13. 169-189.
Google Scholar
[12]
D.A. Matolygina, A.E. Baranchikov, V.K. Ivanov, Yu.D. Tret'yakov. Synthesis of Superfine Titania via HighTemperature Hydrolysis of Titanium(IV) Bis(ammonium lactato) Dihydroxide, Dokl. Chemistry, 2011, 441, 361-364.
DOI: 10.1134/s0012500811120019
Google Scholar
[13]
V.G. Kessler. Synthesis of superfine titania via high-temperature hydrolysis of titanium(IV) bis(ammonium lactato) dihydroxide, J. Sol-Gel Sci. Tech. 2013. 68. 464-470.
DOI: 10.1134/s0012500811120019
Google Scholar
[14]
A.E. Baranchikov, V.K. Ivanov, Yu.D. Tret'yakov. Hydrothermal Microwave Synthesis of Nanocrystalline AnataseDoklady Chem. 2012. 447. 241-243.
Google Scholar
[15]
G.A. Seisenbaeva, G. Daniel, J. -M. Nedelec, V.G. Kessler. Solution equilibrium behind the room-temperature synthesis of nanocrystalline titanium dioxide, Nanoscale. 2013. 5. 3330-3336.
DOI: 10.1039/c3nr34068f
Google Scholar
[16]
A.A. Sadovnikov, A.E. Baranchikov, Y.V. Zubavichus, O.S. Ivanova, V.Y. Murzin, V.V. Kozik, V.K. Ivanov, Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment, J. Photochem. Photobiol. A 303 (2015).
DOI: 10.1016/j.jphotochem.2015.01.010
Google Scholar
[17]
Howard, C. J.; Sabine, T. M.; Dickson, F. Structural and thermal parameters for rutile and anatase, Acta Crystallogr. Sec. B, 47 (1991) 462-468.
DOI: 10.1107/s010876819100335x
Google Scholar
[18]
Ohsaka, T. Temperature Dependence of the Raman Spectrum in Anatase TiO2, J. Phys. Soc. Jpn. 48 (1980) 1661-1665.
Google Scholar
[19]
Weirich, T.E.; Winterer, M.; Seifried, S.; Mayer, J., Structure of nanocrystalline anatase solved and refined from electron powder data, Acta Crystallographica A 58 (2002) 308-315.
DOI: 10.1107/s0108767302005007
Google Scholar