[1]
G. Galati, M.Y. Moridani, T.S. Chan, P.J. O'Brien, Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation, Free Radical Biology & Medicine, 30 (2001) 370-382.
DOI: 10.1016/s0891-5849(00)00481-0
Google Scholar
[2]
M.G. Boersma, J. Vervoort, H. Szymusiak, K. Lemanska, B. Tyrakowska, N. Cenas, et al., Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide, Chem. Res. Toxicol. 13 (2000) 185-191.
DOI: 10.1021/tx990161k
Google Scholar
[3]
H.M. Awad, M.G. Boersma, S. Boeren, P.J. van Bladeren, J. Vervoort, I.M. Rietjens, Structure-activity study on the quinone/quinone methide chemistry of flavonoids, Chem. Res. Toxicol. 14 (2001) 398-408.
DOI: 10.1021/tx000216e
Google Scholar
[4]
H.M. Awad, M.G. Boersma, S. Boeren, P.J. van Bladeren, J. Vervoort, I.M. Rietjens, Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation, Chem. Res. Toxicol. 16 (2003).
DOI: 10.1021/tx020079g
Google Scholar
[5]
L-W. Hu, J-H. Yen, Y-T. Shen, K-Y. Wu, M-J. Wu, Luteolin Modulates 6-Hydroxydopamine-Induced Transcriptional Changes of Stress Response Pathways in PC12 Cells, PLoS ONE 9 (2014) (5): e97880. doi: 10. 1371/journal. pone. 0097880.
DOI: 10.1371/journal.pone.0097880
Google Scholar
[6]
G. Sun, X. Sun, M. Wang, J. Ye, et al., Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression, Toxicol. Appl. Pharmacol. 265 (2012) 229-240.
DOI: 10.1016/j.taap.2012.10.002
Google Scholar
[7]
Š. Ramešová, R. Sokolová, J. Tarábek, I. Degano, The oxidation of luteolin, the natural flavonoid dye, Electrochimica Acta 110 (2013) 646-654.
DOI: 10.1016/j.electacta.2013.06.136
Google Scholar
[8]
D. Tsimogiannis, M. Samiotaki, G. Panayotou, V. Oreopoulou, Characterization of Flavonoid Subgroups and Hydroxy Substitution by HPLC-MS/MS, Molecules, 2007, 12, 593-606.
DOI: 10.3390/12030593
Google Scholar
[9]
J.S. Lee, D.H. Kim, K. -H. Liu, T.K. Oh, C.H. Lee, Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library, Rapid Commun. Mass Spectrom. 19 (2005) 3539-3548.
DOI: 10.1002/rcm.2230
Google Scholar
[10]
B. Harbaum, E.M. Hubbermann, C. Wolff, R. Herges, Z. Zhu, K. Schwarz, Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD, J. Agric. Food Chem. 55 (2007).
DOI: 10.1021/jf071314+
Google Scholar
[11]
J.K. Prasain, C.C. Wang, S. Barnes, Mass spectrometric methods for the determination of flavonoids in biological samples, Free Radical Biology & Medicine 37 (2007) 1324-1350.
DOI: 10.1016/j.freeradbiomed.2004.07.026
Google Scholar
[12]
W. Songsong, X. Haiyu, M. Yan, W. Xuguang et al., Characterization and rapid identification of chemical constituents of NaoXinTong capsules by UHPLC-linear ion trap/Orbitrap mass spectrometry, J. Pharm. Biomed. Anal. 111 (2015) 104-118.
DOI: 10.1016/j.jpba.2015.01.020
Google Scholar
[13]
N. López-Gutiérrez, R. Romero-González, P. Plaza-Bolaños, J.L. Vidal, A.G. Frenich, Identification and quantification of phytochemicals in nutraceutical products from green tea by UHPLC-Orbitrap-MS, Food Chem. 173 (2015) 607-618.
DOI: 10.1016/j.foodchem.2014.10.092
Google Scholar
[14]
M. Stobieck, P. Kachlick, A. Wojakowska, Ł. Marczak, Application of LC/MS systems to structural characterization of flavonoid glycoconjugates, Phytochem. Lett. 11 (2015) 358-367.
DOI: 10.1016/j.phytol.2014.10.018
Google Scholar