Grain Size Effect on the Type VT1-0 Alloy Modified by Aluminum Ion Implantation

Article Preview

Abstract:

The paper presents results of investigations of α-Ti microhardness modified by aluminum ions having diverse grain sizes, namely: 0.3 μm, 1.5 μm, and 17 μm. These investigations show that the decrease of the grain size and the additional ion implantation result in the significant modification of the structural and phase state of the alloy and its mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-151

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.A. Kurzina, E.V. Kozlov, Yu.P. Sharkeev et al., Nanocrystal intermetallic and nitride structures formed at ion-plasma exposure, Publ NTL, Tomsk, (Publ NTL, Tomsk – in Russian), (2008).

Google Scholar

[2] B.A. Grinberg, M.A. Ivanov, Intermetalliс metals Ni3Al and TiAl: microstructure and deformation, Publ UroRAS, Ekaterinburg, (Publ UroRAN, Ekaterinburg - in Russian), (2002).

Google Scholar

[3] I.A. Kurzina, I.A. Bozhko, A. Yu. Eroshenko et al., Evolution of structure and mechanical properties of ultrafine grained titanium, Materials Science (Materialovedenie – in Russian), 5 (2010) 48-55.

Google Scholar

[4] V.I. Gushenets, A.G. Nikolaev, E.M. Oks et al. Simple and inexpensive time-of-flight charge-to-mass analyzer for ion beam source characterization, Rev. Sci. Instrum. 77 (2006) 063301-(1-3).

DOI: 10.1063/1.2206778

Google Scholar

[5] I.A. Kurzina, I.А. Bozhko, G. Yu. Yushkov et al. Features of the formation and localization of nanosized intermetallic phases in the system Ti-Al at ion implantation, Basic Problems of Material Science (Osnovnie problem materialovedeniya – in Russian) 9 (2012).

Google Scholar

[6] I.A. Kurzina, N.A. Popova, M.P. Kalashnikov et al., Phase state of titanium materials after Al ion implantation, Russian Physics Journal (Izv. Vuzov. Fizika – in Russian) 11/3 (2011) 112-119.

Google Scholar

[7] Kurzina I.A., Popova N.A., Nikonenko E.L., Kalashnikov M.P., Savkin K.P., Sharkeev Yu.P., E. V. Kozlov , Intense Formation of Intermetallic Phases during Implantation of Aluminum Ions in Titanium,  Bulletin of the Russian Academy of Sciences. Physics. 76(1) (2012).

DOI: 10.3103/s1062873812010170

Google Scholar

[8] E.V. Kozlov, N.A. Koneva, Origins of metallic material hardening, Rus. Phys.J. 3 (application) (2002) 52-71.

Google Scholar

[9] N.A. Koneva, E.V. Kozlov, Dislocation structure and physical mechanisms of hardening metallic materials, in: D.L. Merson (Eds. ), Advanced Materials (manual), Publisher Tambov State University, (Izdatel'stvo Tambovskogo Gosudarstvennogo Universiteta – in Russian), 2006, pp.267-320.

Google Scholar

[10] N.A. Koneva, E.V. Kozlov, Substructural hardening regularities, Rus. Phys.J. 3 (1991) 56-70.

Google Scholar

[11] D. Mac Lin, Mechanical properties of metals, Metallurgy, Moscow (Moskva – in Russian), (1965).

Google Scholar

[12] B.N. Strunin, Internal stress distribution at random dislocations, Physics of the Solid State (Fizika tverdogo tela – in Russion) 9(3) (1967) 805-812.

Google Scholar

[13] R.W.K. Honeycombe, The plastic deformation of metals, Wiley, (1972).

Google Scholar

[14] М.I. Goldstein, V.M. Farber, Dispersion steel hardening, Metallurgy(Moskva – in Russian), (1979).

Google Scholar