One Step Microwave-Assisted Synthesis of Fluorinated Titania Photocatalyst

Article Preview

Abstract:

Microwave-assisted high temperature hydrolysis of titanium oxysulfate, in the presence of ammonium fluoride, allows synthesizing nanocrystalline titanium dioxide photocatalysts possessing photocatalytic activity as high as the commercial photocatalyst Evonik Aeroxide® TiO2 P 25. Dye-sensitized reactions play an important role in organic dye discoloration in the presence of fluorinated titania.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, X.T. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[2] A. Dutta, A. J. Bhaumik, Nanopores in semiconducting oxides: optoelectronic and solar cell applications, Nanosci. Nanotech. 13 (2013) 2471-2482.

DOI: 10.1166/jnn.2013.7378

Google Scholar

[3] B. Ohtani, Preparing articles on photocatalysis – beyond the illusions, misconceptions, and speculation, Chem. Lett. 37 (2008) 217-229.

DOI: 10.1246/cl.2008.216

Google Scholar

[4] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[5] J. Ryu, W. Choi, Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application, Environ. Sci. Technol. 42 (2008) 294-300.

DOI: 10.1021/es071470x

Google Scholar

[6] X. Chen; S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[7] C. -C. Wang, J.Y. Ying, Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater. 11 (1999) 3113-3120.

DOI: 10.1021/cm990180f

Google Scholar

[8] S.M. Gupta, M. Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route, Centr. Eur. J. Chem. 10 (2012) 279-294.

Google Scholar

[9] P.E. Meskin, V.K. Ivanov, A.E. Barantchikov, B.R. Churagulov, Yu.D. Tretyakov, Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0. 5Zn0. 5Fe2O4 powders, Ultrason. Sonochem. 13 (2006) 47-53.

DOI: 10.1016/j.ultsonch.2004.12.002

Google Scholar

[10] V.K. Ivanov, V.D. Maksimov, A.S. Shaporev, A.E. Baranchikov, B.P. Churagulov, I.A. Zvereva, Yu.D. Tret'yakov, Hydrothermal synthesis of efficient TiO2-based photocatalysts, Russ. J. Inorg. Chem. 55 (2010) 150-154.

DOI: 10.1134/s0036023610020026

Google Scholar

[11] A.E. Baranchikov, V.K. Ivanov, Yu.D. Tret'yakov, Hydrothermal microwave synthesis of nanocrystalline anatase, Dokl. Chem. 447 (2012) 241-243.

DOI: 10.1134/s0012500812110055

Google Scholar

[12] M. Abdullah, G.K.C. Low, R.W. Matthews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic-carbon over illuminated titanium-dioxide. J. Phys. Chem. 94 (1990) 6820-6825.

DOI: 10.1021/j100380a051

Google Scholar

[13] E.A. Moskalenko, A.A. Sadovnikov, A.E. Baranchikov, A.E. Goldt, V.V. Kozik, V.K. Ivanov, Synthesis of nanocrystalline titania via microwave-assisted homogeneous hydrolysis under hydrothermal conditions, Curr. Microwave Chem. 1 (2014) 81-86.

DOI: 10.2174/2213335601666140404163607

Google Scholar

[14] M. V. Dozzi, E. Selli, Specific facets-dominated anatase TiO2: Fluorine-mediated synthesis and photoactivity, Catalysts 3 (2013) 455-485.

DOI: 10.3390/catal3020455

Google Scholar

[15] A.A. Sadovnikov, A.E. Baranchikov, Y.V. Zubavichus, O.S. Ivanova, V.Y. Murzin, V.V. Kozik, V.K. Ivanov, Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment, J. Photochem. Photobiol. A 303 (2015).

DOI: 10.1016/j.jphotochem.2015.01.010

Google Scholar

[16] D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets, Chem. Commun. (2009) 4381-4383.

DOI: 10.1039/b907963g

Google Scholar

[17] M. V. Dozzi, C. D'Andrea, B. Ohtani, G. Valentini, E. Selli, Fluorine-doped TiO2 materials: photocatalytic activity vs time-resolved photoluminescence, J. Phys. Chem. C 117 (2013) 25586-25595.

DOI: 10.1021/jp4095563

Google Scholar

[18] M.V. Dozzi, E. Selli, Doping TiO2 with p-block elements: Effects on photocatalytic activity, J. Photochem. Photobiol., C 14 (2013) 13-28.

DOI: 10.1016/j.jphotochemrev.2012.09.002

Google Scholar

[19] C. Minero, G. Mariella, V. Maurino, D. Vione, E. Pelizzetti, Photocatalytic Transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide−fluoride system, Langmuir 16 (2000).

DOI: 10.1021/la0005863

Google Scholar

[20] Petricek,V., Dusek,M. & Palatinus,L. (2006). Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic.

Google Scholar

[21] R. Zenobi, In situ analysis of surfaces and mixtures by laser desorption mass spectrometry, Int. J. Mass Spectr. Ion Proc. 145 (1995) 51-77.

DOI: 10.1016/0168-1176(95)04163-f

Google Scholar

[22] Y. -H. Ben Liao, J.X. Wang, J. -S. Lin, W. -H. Chung, W. -Y. Lin, C. -C. Chen, Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye, Catal. Today 174 (2011) 148-159.

DOI: 10.1016/j.cattod.2011.03.048

Google Scholar

[23] V.K. Ivanov, P.P. Fedorov, A.Y. Baranchikov, V.V. Osiko, Oriented attachment of particles: 100 years of investigations of non-classical crystal growth, Russ. Chem. Rev. 83 (2014) 1204-1222.

DOI: 10.1070/rcr4453

Google Scholar

[24] M. N. Chong, B. Jin, C. W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 44 (2010) 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[25] S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today 147 (2009) 1-59.

DOI: 10.1016/j.cattod.2009.06.018

Google Scholar