[1]
Iu. V. Kirillina, L. A. Nikiforov, A. A. Okhlopkova, S. A. Sleptsova, Cheonho C. Yoon, Jin-HoCho, Nanocomposites Based on Polytetrafluoroethylene and Ultrahigh Molecular Weight Polyethylene: A Brief Review, Bull. Korean Chem. Soc. 12 (2014).
DOI: 10.5012/bkcs.2014.35.12.3411
Google Scholar
[2]
R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites, Current Opinion in Solid State and Materials Science. 8 (2004) 31-37.
DOI: 10.1016/j.cossms.2003.10.006
Google Scholar
[3]
Sinha, S.R. and Briscoe, B.J., Polymer Tribology, London: Imperial College, (2009).
Google Scholar
[4]
W. Shi, Preliminary Investigation into the Load Bearing Capacity of Ion Beam Surface Modified UHMWPE,J. Mater. Sci. Lett. 39 (2004) 3183-3186.
DOI: 10.1023/b:jmsc.0000025854.49913.4a
Google Scholar
[5]
Shoufan Cao, Hongtao Liu, Shirong Ge, Gaofeng Wu, Mechanical and tribological behaviors of UHMWPE composites filled with basalt fibers, Journal of Reinforced Plastics and Composites. 4 (2011) 347-355.
DOI: 10.1177/0731684410394698
Google Scholar
[6]
S. V. Panin, L. A. Kornienko, S. Piriyaon, L. R. Ivanova, S. V. Shil'ko, Yu. M. Pleskachevskii, V. M. Orlov, Antifriction Nanocomposites Based on Chemically Modified UHMWPE. Part 1. Mechanical and Tribological Properties of Chemically Modified UHMWPE, Journal of Friction and Wear. 3 (2011).
DOI: 10.3103/s1068366611030093
Google Scholar
[7]
A. A. Okhlopkova, S. A. Sleptsova. Nanoceramic and polytetrafluoroethylene polymer composites for mechanical seal application at low temperature, Bull. Korean Chem. Soc. 5 (2013) 1345-1348.
DOI: 10.5012/bkcs.2013.34.5.1345
Google Scholar
[8]
Martin K. Beyer, Hauke Clausen-Schaumann, Mechanochemistry: The Mechanical Activation of Covalent Bonds, Chemical Reviews. 8 (2005) 2921-2948.
DOI: 10.1021/cr030697h
Google Scholar
[9]
O.K. Muratoglu, C.R. Bragdon, D.O. O'Connor, M. Jasty, W.H. Harris, R. Gul, F. McGarry, Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE), Biomaterials. 20 (1999) 1463-1470.
DOI: 10.1016/s0142-9612(99)00039-3
Google Scholar
[10]
German S. Fox-Rabinovich, Iosif Gershman, Mohamed A. El Hakim, Mohamed A. Shalaby, James E. Krzanowski, Stephen C. Veldhuis, Tribofilm Formation As a Result of Complex Interaction at the Tool/Chip Interface during cutting, Lubricants 2 (2014).
DOI: 10.3390/lubricants2030113
Google Scholar
[11]
S.H. Rhee, K.C. Ludema, Mechanisms of formation of polymeric transfer films, Wear. 46 (1978) 231-240.
DOI: 10.1016/0043-1648(78)90124-2
Google Scholar
[12]
Erno Pretsch, Philippe Buhlmann, Martin Badertscher, Structure Determination of Organic Compounds: Tables of Spectral Data. Fourth, Revised and Enlarged Edition. Springer-Verlag: Berlin, Heidelberg, (2009).
DOI: 10.1007/978-3-540-93810-1_3
Google Scholar
[13]
Magda Rocha, Alexandra Mansur, Herman Mansur, Characterization and accelerated ageing of UHMWPE used in orthopedic prosthesis by peroxide, Materials. 2 (2009) 562-576.
DOI: 10.3390/ma2020562
Google Scholar
[14]
K. Nakanishi, Infrared absorption spectroscopy: Practical Unknown Binding, (1963).
Google Scholar
[15]
A. Lee Smith, Applied infrared spectroscopy: Fundamentals, techniques and analytical problem-solving, Wiley—Interscience, New York, (1979).
Google Scholar
[16]
J. Partyka, M. Gajek, K. Gasek, Effects of quartz grain size distribution on the structure of porcelain glaze, Ceramics International. 40. 8 (2014) 12045-12053.
DOI: 10.1016/j.ceramint.2014.04.044
Google Scholar
[17]
Philip J. Launer, Infrared Absorption Bands Characteristic of the Si–CH2CH2CN and Si–CH2CH2CH2CN Groups, Appl. Spectrosc. 22 (1968) 201-203.
DOI: 10.1366/000370268774383372
Google Scholar
[18]
M. A. Karkassides, D. Gournis, D. Petridis, An infrared reflectance study of Si-O vibrations in thermally treated alkalisaturated montmorillonites, Clay Minerals 34 (1999) 429-438.
DOI: 10.1180/000985599546334
Google Scholar