Formation and Reactivity of Cu Particles on the Surface of Mixed Copper-Zirconium Phosphate

Article Preview

Abstract:

Phase evolution of copper-containing zirconium phosphates during the temperature treatment up to 900 °C and formation of active Cu0 particles on the surface of these materials in H2/Ar flow were studied. The materials were characterized by XRD, TEM, TPR-H2 at different steps of treatment. Temperature increase up to 900 °C led to removal of oxygen from the CuZr4P6O24 structure with formation of Cu+-containing compounds. Materials treated by H2-containing flow at 600 °C contained Cu0 particles with sizes from 2 nm to 1 μm. Mixed copper-zirconium phosphate was shown to adsorb CO above 80 °C, while pre-reduced materials adsorbed it starting from 30 °C with formation of CO2 above 100 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-81

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Serghini, R. Brochu, M. Ziyad, M. Loukah, J. C. Védrine, Behaviour of Copper-Zirconium Nasicon-type phosphates, CuZr2(PO4)3, in the decomposition of isopropyl alcohol, J. Chem. Faraday Trans. 87 (1991) 2487-2491.

DOI: 10.1039/ft9918702487

Google Scholar

[2] M. Kacimi, M. Ziyad, L. F. Liotta, Cu on amorphous AlPO4: Preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen, Cat. Tod. 241 (2015) 151-158.

DOI: 10.1016/j.cattod.2014.04.003

Google Scholar

[3] G.V. Mamontov, O.V. Magaev, A.S. Knyazev, O.V. Vodyankina, Influence of phosphate addition on activity of Ag and Cu catalysts for partial oxidation of alcohols, Cat. Tod. 203 (2013) 122-126.

DOI: 10.1016/j.cattod.2012.02.048

Google Scholar

[4] A.I. Pylinina, I.I. Mikhalenko, Influence of compensator ions in the anionic part of Na3ZrM(PO4)3 phosphate with M = Zn, Co, Cu on the acidity and catalytic activity in reactions of butanol-2, Rus. J. Phys. Chem. A. 87 (2013) 372-375.

DOI: 10.1134/s0036024413030230

Google Scholar

[5] E. Breval, D. K. Agrawal, Synthesis and X-ray data of M(TiCr)P3O12, Cu(I)Ti2P3O12 and Cu(I)1+2xZr2-xCu(II)xP3O12-x, J. Mat. Sci. Let. 18 (1999) 1015-1017.

Google Scholar

[6] E. Christensen, J. H. Von Barner, J. Engell, N. J. Bjerrum, Preparation of CuZr2P3O12 from alkoxide-derived gels: phase formation as a function of heat treatment, J. Mat. Sci. 25 (1990) 4060-4065.

DOI: 10.1007/bf00582482

Google Scholar

[7] E. Fargin, I. Bussereau, R. Olazcuaga, G. Le Flem, C. Cartier, H. Dexpert, An EXAFS investigation on copper (I-II) related Nasicon-type phosphates, J. Sol. St. Chem. 112 (1994) 176-181.

DOI: 10.1006/jssc.1994.1283

Google Scholar

[8] N.V. Dorofeeva, O.V. Vodyankina, O.S. Pavlova, G.V. Mamontov, Synthesis of mixed zirconium-silver phosphates and formation of active catalyst surface for the ethylene glycol oxidation process, Stud. Surf. Sci. Catal. 175 (2010) 175-759.

DOI: 10.1016/s0167-2991(10)75154-5

Google Scholar

[9] M. Ziyad, R. Ahmamouch, M. Rouimi, S. Gharbage, J. C. Védrine, Synthesis and properties of a new copper(II)-hafnium phosphate Cu0. 5Hf2(PO4)3, Sol. St. Ion. 110 (1998) 311-318.

DOI: 10.1016/s0167-2738(98)00139-8

Google Scholar

[10] A. Hornés, P. Bera, A. L. Cámara, D. Gamarra, G. Munuera, A. Martínez-Arias, CO-TPR-DRIFTS-MS in situ study of CuO/Ce1-xTbxO2-y (x = 0, 0. 2 and 0. 5) catalysts: Support effects on redox properties and CO oxidation catalysis, J. Cat. 268 (2009).

DOI: 10.1016/j.jcat.2009.10.007

Google Scholar