Effects of Spacer Length on the Surface Properties of Cationic Gemini Fluorosurfactants

Article Preview

Abstract:

A novel class of cationic gemini fluorosurfactants with different spacer and same hydrophobic chain were synthesized. They were structurally characterized by NMR (1H and 19F), FT-IR, ESI-MS and elemental analysis. The equilibrium surface tensions were studied. The results showed that the gemini fluorosurfactants with the shorter spacer displayed higher surface activity, lower surface tension (21.48 mN/m) can be reached. Besides, the synergistic properties of these synthesized gemini fluorosurfactants with sodium dodecyl benzene sulfonate (SDBS) were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-216

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bhadani, S. Singh, Synthesis and properties of spacer containing gemini imidazolium surfactants, Langmuir 27 (2011) 14033–14044.

DOI: 10.1021/la202201r

Google Scholar

[2] F. M. Menger, J. S. Keiper, Gemini surfactants, Angew. Chem. Int. Ed. 39 (2000) 1906–(1920).

DOI: 10.1002/1521-3773(20000602)39:11<1906::aid-anie1906>3.0.co;2-q

Google Scholar

[3] R. Zana, H. Levy, D. Papoutsi, G. Beinert, Micellization of two triquaternary ammonium surfactants in aqueous solution, Langmuir 11 (1995) 3694–3698.

DOI: 10.1021/la00010a018

Google Scholar

[4] L. Leclercq, Development of N, N'-diaromatic diimidazolium cations for highlyorganized crystalline materials, Cryst. Growth Des. 9 (2009) 4784–4792.

DOI: 10.1021/cg900630a

Google Scholar

[5] R. Kamboj, S. Singh, A. Bhadani, H. Kataria, G. Kaur, Gemini imidazolium sur-factants: synthesis and their biophysiochemical study, Langmuir 28 (2012)11969–11978.

DOI: 10.1021/la300920p

Google Scholar

[6] W. Joanna, C. J, M. Irena. Preparation, Surface-active properties and antimicrobial activities of bis(ester quaternary ammonium) salts, J. Surfact. Deterg. 10 (2007) 109–116.

DOI: 10.1007/s11743-007-1020-z

Google Scholar

[7] T. Chen, X. Liu, Q. You, D. Yu, J. Wang, The impact of in-situ fabric surface energy on dehydration of fabrics, J. Surfact. Deterg. 18 (2015) 397–403.

DOI: 10.1007/s11743-015-1675-9

Google Scholar

[8] R. Zana, Dimeric (gemini) surfactants: Effect of the spacer group on the association behavior in aqueous solution, J. Colloid Interface Sci. 248 (2002) 203–220.

DOI: 10.1006/jcis.2001.8104

Google Scholar

[9] Y. Li, P. Li, C. Dong, X. Wang, Aggregation properties of cationic gemini surfactants with partially fluorinated spacers in aqueous solution, Langmuir 22 (2005) 42–45.

DOI: 10.1021/la051544n

Google Scholar

[10] C. Guo, P. Zhou, J. Shao, X. Yang, Integrating statistical and experimental protocols to model and design novel gemini surfactants with promising critical micelle concentration and low environmental risk, Chemosphere 84 (2011) 1608–1616.

DOI: 10.1016/j.chemosphere.2011.05.031

Google Scholar

[11] H. Akbaş, A. Elemenli, M. Boz, Aggregation and thermodynamic properties of some cationic gemini surfactants, J. Surfact. Deterg. 15 (2012) 33–40.

DOI: 10.1007/s11743-011-1270-7

Google Scholar

[12] P. Quagliotto, C. Barolo, N. Barbero, Synthesis and characterization of highly fluorinated gemini pyridinium surfactants. Eur. J. Org. Chem. 19 (2009) 3167–3177.

DOI: 10.1002/ejoc.200900063

Google Scholar

[13] N. Koshti, G. V. Reddy, H. Jacobs, A. Gopalan, Convenient synthetic methods for the preparation of n-fluoroalkylhydroxamic acids, Synth. Commun. 32 (2002) 3779–3790.

DOI: 10.1081/scc-120015396

Google Scholar

[14] S. Tu, X. Jiang, L. Zhou, W. Yin, Study of the interaction of gemini surfactant nae12-4-12 with bovine serum albumin, J. Lumin. 132 (2012) 381–385.

DOI: 10.1016/j.jlumin.2011.08.051

Google Scholar