[1]
A. Corma, P. Atienzar, H. Garcia, J.Y. Chane-Ching, Hierarchically mesostructured doped CeO2 with potential for solar-cell use, Nat. Mater. 3 (2004) 394-397.
DOI: 10.1038/nmat1129
Google Scholar
[2]
A. Vantomme, Z.Y. Yuan, G. Du, B.L. Su, Surfactant-assisted large-scale preparation of crystalline CeO2 nano-rods, Langmuir. 21 (2005) 1132–1135.
DOI: 10.1021/la047751p
Google Scholar
[3]
X. D. Feng, D.C. Sayle, Z.L. Wang, M.S. Paras, B. Santora, A.C. Sutorik, T.X.T. Sayle, Y. Yang, Y. Ding, X.D. Wang, Y.S. Her, Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres, Science. 312 (2006) 1504–1508.
DOI: 10.1126/science.1125767
Google Scholar
[4]
Li R.X., S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process, Solid State Ionics. 151(2002) 235-241.
DOI: 10.1016/s0167-2738(02)00715-4
Google Scholar
[5]
Jasinski, P. Suzuki, T. Anderson, H.U. Anderson, Nano-crystalline undoped ceria oxygen sensor, Sensors& Actuators B, Chemical. 95 (2003) 73-77.
DOI: 10.1016/s0925-4005(03)00407-6
Google Scholar
[6]
B. Murugan, A.V. Ramaswamy, Defect-Site Promoted Surface Reorganization in Nano -crystalline Ceria for the Low-Temperature Activation of Ethylbenzene, J. Am. Chem. Soc. 129 (2007) 3062–3063.
DOI: 10.1021/ja066834k
Google Scholar
[7]
G.F. Li, Q.Y. Wang, B. Zhao, R.X. Zhou, A new insight into the role of transition metals doping with CeO2–ZrO2 and its application in Pd-only three-way catalysts for automotive emission control, Fuel. 92 (2012) 360–368.
DOI: 10.1016/j.fuel.2011.07.028
Google Scholar
[8]
F. Zhou, X.M. Zhao, H. Xu, C.G. Yuan, CeO2 spherical crystallites: synthesis, formation mechanism, size control, and electrochemical property study, J . Phys. Chem. C. 111 (2007) 1651–1657.
DOI: 10.1021/jp0660435
Google Scholar
[9]
D. Zhang, H. Fu, L. Shi, et al., Synthesis of CeO2 nano-rods via ultrasonication assisted by polyethylene glycol, Inorg. Chem. 46 (2007) 2446–2451.
DOI: 10.1021/ic061697d
Google Scholar
[10]
C. Pan, D. Zhang, L. Shi, J. Fang, Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nano-rods, nanotubes, nanowires, and nano-cubes, Eur. J. Inorg. Chem. 15 (2008) 2429–2436.
DOI: 10.1002/ejic.200800047
Google Scholar
[11]
B. Tang, L. Zhuo, J. Ge, G. Wang, Z. Shi, J. Niu, A surfactant-free route to single-crystalline CeO2 nanowires, Chem. Commun. 28 (2005) 3565–3567.
DOI: 10.1039/b500708a
Google Scholar
[12]
Tana, M.I. Zhang, J. Li, H.J. Li, Y. Li, W.J. Shen, Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles, Catal. Today. 148(2009) 179–183.
DOI: 10.1016/j.cattod.2009.02.016
Google Scholar
[13]
M. Ge, C.S. Guo, L. Li, B.Q. Zhang, Y.C. Feng, Y.Q. Wang, Preparation of CeO2 novel sponge-like rods by emulsion liquid membrane system and its catalytic oxidation roperty, Mater. Lett. 63 (2009) 1269–1271.
DOI: 10.1016/j.matlet.2009.02.056
Google Scholar
[14]
C.S. Pan, D.S. Zhang, L.Y. Shi, CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nano-plates, nanotubes, and nano-rods, J. Solid State Chem. 181 (2008) 1298–1306.
DOI: 10.1016/j.jssc.2008.02.011
Google Scholar
[15]
R.J. Qi, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Sonochemical synthesis of single-crystalline CeOHCO3 rods and their thermal conversion to CeO2 rods, Nanotechnology. 16 (2005) 2502–2506.
DOI: 10.1088/0957-4484/16/11/006
Google Scholar
[16]
Q. Cui, X. Dong, J. Wang, M. Li, Direct fabrication of cerium oxide hollow nanofibers by electrospinning, J. Rare Earths. 26 (2008) 664–669.
DOI: 10.1016/s1002-0721(08)60158-1
Google Scholar
[17]
F.B. Gu, Z. Wang, D. Han, C. Shi, G. Guo, Reverse micelles directed synthesis of mesoporous ceria nanostructures, Mater. Sci. Eng. B. 139 (2007) 62–68.
DOI: 10.1016/j.mseb.2007.01.051
Google Scholar
[18]
R.J. La, Z.A. Hu, H. L Li., X.L. Shang, Y.Y. Yang, Template synthesis of CeO2 ordered nanowire arrays, Mater. Sci. Eng. A. 368 (2004) 145–148.
DOI: 10.1016/j.msea.2003.10.279
Google Scholar
[19]
Y.F. Huang, Y.B. Cai, D.K. Qiao, H. Liu, Morphologycontrollable synthesis and characterization of CeO2 nano-crystals, Particuology. 9 (2011) 170–173.
Google Scholar
[20]
X.H. Yang, C.L. Shao, Y.C. Liu, R.X. Mu, H.Y. Guan, Nanofibers of CeO2 via an electrospinning technique, Thin Solid Films. 478 (2005) 228– 231.
DOI: 10.1016/j.tsf.2004.11.102
Google Scholar
[21]
H. Imagawa, S.H. Sun, Controlled Synthesis of Monodisperse CeO2 Nanoplates Developed from Assembled Nanoparticles J. Phys. Chem. C. 116 (2012) 2761−2765.
DOI: 10.1021/jp210324x
Google Scholar
[22]
R.O. Fuentes, L.M. Acuña, M.G. Zimicz, D.G. Lamas, J.G. Sacanell, L.A. Gabriela , R.T. Baker, Formation and structural properties of Ce–Zr mixed oxide nanotubes, Chem. Mater. 20 (2008) 7356–7363.
DOI: 10.1021/cm801680c
Google Scholar
[23]
R. Yang, L. Guo, Synthesis of the nanotublar cubic fluorite CeO2, Chin. J. Inorg. Chem. 20 (2004) 152–158.
Google Scholar
[24]
G. Chen, S. Sun, X. Sun, W. Fan, T. You, Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through kirkendall diffusion, Inorg. Chem. 48 (2009) 1334–1338.
DOI: 10.1021/ic801714z
Google Scholar
[25]
D. Zhang, H. Fu, L. Shi, J. Fang, Q. Li, Carbon nanotube assisted synthesis of CeO2 nanotubes, J. Solid State Chem. 180 (2007) 654–660.
DOI: 10.1016/j.jssc.2006.11.025
Google Scholar
[26]
J. Fang, Z. Cao, D. Zhang, X. Shen, W. Ding, L. Shi, Preparation and CO conversion activity of ceria nanotubes by carbon nanotubes templating method, J. Rare Earths. 26 (2008) 153–157.
DOI: 10.1016/s1002-0721(08)60056-3
Google Scholar
[27]
W.Q. Han, L.J. Wu, Y.M. Zhu, Formation and Oxidation State of CeO2-x Nanotubes, J. Am Chem. Soc. 127 (2005) 12814-12815.
Google Scholar
[28]
C.C. Tang, Y. Bando, B.D. Liu, D. Golberg, Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes, Adv. Mater. 17 (2005) 3005–3009.
DOI: 10.1002/adma.200501557
Google Scholar
[29]
Y. Zhou, Y.F. Gao, Y.C. Liu, J.R. Liu, High efficiency Pt-CeO2/carbon nanotubes hybrid Composite as an anode electrocatalyst for direct methanol fuel cells, Journal of Power Sources. 195 (2010) 1605–1609.
DOI: 10.1016/j.jpowsour.2009.08.106
Google Scholar
[30]
C.S. Pan, D.S. Zhang, L.Y. Shi, J.H. Fang, Template-Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO2 Nanorods, Nanotubes, Nanowires, and Nanocubes, Eur. Inorg. Chem. (2008) 2429–2436.
DOI: 10.1002/ejic.200800047
Google Scholar
[31]
Z.R. Tang, Y.H. Zhang, Y.J. Xu, A facile and high-yield approach to synthesize one -dimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants, RSC Advances. 1 (2011) 1772–1777.
DOI: 10.1039/c1ra00518a
Google Scholar
[32]
D.S. Zhang, H.X. Fu, L.Y. Shi, J.H. Fang, Q. Li, Carbon nanotube assisted synthesis of CeO2 nanotubes, Journal of the Solid State Chemistry. 180 (2007) 654–660.
DOI: 10.1016/j.jssc.2006.11.025
Google Scholar
[33]
K.L. Yu, G.L. Ruan, Y.H. Ben, J.J. Zou, Convenient synthesis of CeO2 nanotubes, Materials Science and Engineering B. 139 (2007) 197–200.
DOI: 10.1016/j.mseb.2007.02.011
Google Scholar
[34]
Z.G. Chen, F. Chen, X.Z. Li, X.W. Lu, C.Y. Ni, X.B. Zhao, Facile synthesis of CeO2 nanotubes templated by modified attapulgite, J. Rare Earths. 28 (2010) 566-570.
DOI: 10.1016/s1002-0721(09)60155-1
Google Scholar
[35]
K. Yoon, Y. Yang, P. Lu, D.H. Wan, H.C. Peng, K. S. Masias, P. T. Fanson, C. T. Campbell, Y.N. Xia, A Highly Reactive and Sinter-Resistant Catalytic System Based on Platinum Nanoparticles Embedded in the Inner Surfaces of CeO2 Hollow Fibers, Angew. Chem. Int. Ed. 51 (2012).
DOI: 10.1002/anie.201203755
Google Scholar
[36]
M. Li, Y.H. Hu, Z.G. Liu, X.F. Wang, M.T. Wang, Growth of nano hexagon-like flake arrays cerium carbonate created with PAH as the substrate, Journal of Solid State Chemistry. 221 (2015) 263–271.
DOI: 10.1016/j.jssc.2014.09.024
Google Scholar
[37]
F. Xu, Y. Xie, X. Zhang, et al., From polymer–metal complex framework to 3D architectures: growth, characteriza-tion and formation mechanism of micrometersized α-NiS, New J. Chem. 27 (2003) 1331–1335.
DOI: 10.1039/b303514j
Google Scholar