[1]
T Śliwa, M Jarzębski, J Gapiński, et al, Stimuli-Responsive PNIPAM Based Copolymers: Modeling and Light Scattering Investigations, J. Acta Physica Polonica A. 125(2014) 1245-1248.
DOI: 10.12693/aphyspola.125.1245
Google Scholar
[2]
V Boyko, A Pich, Y Lu, et al, Thermo-sensitive poly (N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1-ynthesis and characterization, J. Polymer. 44(2003) 7821-7827.
DOI: 10.1016/j.polymer.2003.09.037
Google Scholar
[3]
J D Debord, L A Lyon, Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures, J. Langmuir. 19(2003) 7662-7664.
DOI: 10.1021/la0342924
Google Scholar
[4]
V Lapeyre, C Ancla, B Catargi, et al, Glucose-responsive microgels with a core–shell structure, J. Journal of colloid and interface science. 327(2008) 316-323.
DOI: 10.1016/j.jcis.2008.08.039
Google Scholar
[5]
K Tauer, D Gau, S Schulze, et al, Thermal property changes of poly (N-isopropylacrylamide) microgel particles and block copolymers, J. Colloid and Polymer Science. 287(2009) 299-312.
DOI: 10.1007/s00396-008-1984-x
Google Scholar
[6]
T Hellweg, C D Dewhurst, W Eimer, et al, PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization, J. Langmuir. 20(2004) 4330-4335.
DOI: 10.1021/la0354786
Google Scholar
[7]
J Virtanen, C Baron, H Tenhu, Grafting of poly (N-isopropylacrylamide) with poly (ethylene oxide) under various reaction conditions, J. Macromolecules. 33(2000) 336-341.
DOI: 10.1021/ma990978k
Google Scholar
[8]
I Berndt, W Richtering, Doubly temperature sensitive core-shell microgels, J. Macromolecules. 36(2003) 8780-8785.
DOI: 10.1021/ma034771+
Google Scholar
[9]
M Panayiotou, C Pöhner, C Vandevyver, et al, Synthesis and characterisation of thermo-responsive poly (N, N'-diethylacrylamide) microgels, J. Reactive and Functional Polymers. 67(2007) 807-819.
DOI: 10.1016/j.reactfunctpolym.2006.12.008
Google Scholar
[10]
Y Guan, Y Zhang, PNIPAM microgels for biomedical applications: From dispersed particles to 3D assemblies, J. Soft Matter. 7(2011) 6375-6384.
DOI: 10.1039/c0sm01541e
Google Scholar
[11]
M Bradley, B Vincent, Poly (vinylpyridine) core/poly (N-isopropylacrylamide) shell microgel particles: Their characterization and the uptake and release of an anionic surfactant, J. Langmuir. 24(2008) 2421-2425.
DOI: 10.1021/la703327v
Google Scholar
[12]
D Gan, L A Lyon, Fluorescence nonradiative energy transfer analysis of crosslinker heterogeneity in core–shell hydrogel nanoparticles, J. Analytica chimica acta. 496(2003) 53-63.
DOI: 10.1016/s0003-2670(03)00989-9
Google Scholar
[13]
Y Lu, M Ballauff, Thermosensitive core–shell microgels: from colloidal model systems to nanoreactors, J. Progress in Polymer Science. 36(2011) 767-792.
DOI: 10.1016/j.progpolymsci.2010.12.003
Google Scholar
[14]
M Zeiser, I Freudensprung, T Hellweg, Linearly thermoresponsive core-shell microgels: Towards a new class of nanoactuators, J. Polymer. 53(2012) 6096-6101.
DOI: 10.1016/j.polymer.2012.10.001
Google Scholar
[15]
V Aseyev, H Tenhu, F M Winnik, Non-ionic thermoresponsive polymers in water, M. Adv Polym Sci. 242(2011) 29-89.
Google Scholar