[1]
D.B. Miracle, Metal matrix composites – From science to technological significance, Compos. Sci. Technol. 65 (2005) 2526-2540.
DOI: 10.1016/j.compscitech.2005.05.027
Google Scholar
[2]
J. Bujak, R. Michalczewski, Characterization and properties of low-friction, multilayered Cr-doped diamond-like carbon coatings prepared by pulse biased filtered cathodic arc deposition, P I Mech. Eng. J-J Eng. 225 (2011) 875-882.
DOI: 10.1177/1350650111411380
Google Scholar
[3]
M. Szczerek, W. Piekoszewski, R. Michalczewski, The problems of application of PVD/CVD thin hard coatings for heavy-loaded machine components, Proc. of the ASME/STLE Int. Joint Tribology Conference, PTS A AND B, (2008) 35-37.
DOI: 10.1115/ijtc2007-44244
Google Scholar
[4]
R. Michalczewski, W. Piekoszewski, M. Szczerek, W. Tuszynski, The problems of resistance to scuffing of heavily loaded lubricated friction joints with WC/C-coated parts, Ind. Lubr. Tribol. 66 (2014) 434-442.
DOI: 10.1108/ilt-01-2012-0001
Google Scholar
[5]
J. Drabik, M. Trzos, J.T. Janecki, Effect of modelling of the grease content in the metal-polymer composite on the tribological resistance, Przemysl Chemiczny, 92 (2013) 369-373.
Google Scholar
[6]
A. Strojny-Nedza, K. Pietrzak, Processing, microstructure and properties of different method obtained Cu-Al2O3 composites, Arch. Metall. Mater. 59(4) (2014) 1301-1306.
DOI: 10.2478/amm-2014-0222
Google Scholar
[7]
J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta. Mater. 66(8) (2012) 594-597.
DOI: 10.1016/j.scriptamat.2012.01.012
Google Scholar
[8]
S.F. Moustafa, S.A. El-Badry, A.M. S anad, B. Kieback, Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders, Wear 253 (2002) 699-710.
DOI: 10.1016/s0043-1648(02)00038-8
Google Scholar
[9]
X. Jincheng, Y. Hui, L. Xiaolong, Y. Hua, Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite, Mater. Design. 25 (2004) 489-493.
DOI: 10.1016/j.matdes.2004.01.011
Google Scholar
[10]
W. Z. Eddine, P. Matteazzi, J. -P. Celis, Mechanical and tribological behavior of nanostructured copper–alumina cermets obtained by Pulsed Electric Current Sintering, Wear, 297(1-2) (2013) 762–773.
DOI: 10.1016/j.wear.2012.10.011
Google Scholar
[11]
K. Prakasan, S. Palaniappan, S. Seshan, Thermal expansion characteristics of cast Cu based metal matrix composites, Composites Part A, 28A (1997) 1019-1022.
DOI: 10.1016/s1359-835x(97)00077-8
Google Scholar
[12]
G. Celebi Efe, S. Zeytin, C. Bindal, The effect of SiC particie size on the properties of Cu-SiC composites, Materials and Design, 36 (2012) 633-639.
DOI: 10.1016/j.matdes.2011.11.019
Google Scholar
[13]
A. Strojny-Nędza, K. Pietrzak, Processing, microstructure and properties of different method obtained Cu-Al2O3 composites, Arch. of Metal. and Materials, 59(4) (2014) 1301-1306.
DOI: 10.2478/amm-2014-0222
Google Scholar
[14]
J. Kovacik, S. Emmer, J. Bielek, L. Kelesi, Effect of composition on friction coefficient of Cu–graphite composites. Wear, 265 (2008) 417-421.
DOI: 10.1016/j.wear.2007.11.012
Google Scholar
[15]
M. Tokita, Mechanism of spark plasma sintering, J. Soc. Powder Tech. Jpn. 30 (1993) 790-804.
Google Scholar
[16]
P. Nieroda, R. Zybala, K.T. Wojciechowski, Development of the method for the preparation of Mg2Si by SPS technique, AIP Conf. Proc. 1449 (2012) 199-202.
DOI: 10.1063/1.4731531
Google Scholar
[17]
M. Chmielewski, D. Kaliński, K. Pietrzak, W. Włosinski, Relationship between mixing conditions and properties of sintered 20AlN/80Cu composite materials, Arch. of Metall. Mater. 55(2) (2010) 579-585.
Google Scholar