[1]
K. -H. zum Gahr, Microstructure and Wear of Materials, Elsevier Science Publishers B.V., Amsterdam, (1987).
Google Scholar
[2]
G.W. Stachiowiak, A. Batchelor, Engineering Tribology 3rd ed., Elsevier, London, (2002).
Google Scholar
[3]
B.G. Mellor, Surface coatings for protection against wear, Woodhead publishing limited, Cambridge, (2006).
Google Scholar
[4]
R.G. Bayer, Mechanical Wear Fundamentals and Testing, Marcel Dekker Inc., New York, (2004).
Google Scholar
[5]
K. Kumari, K. Anand, M. Bellacci, M. Giannozzi, Effect of microstructure on abrasive wear behaviour of thermally sprayed WC-10Co-4Cr coatings, Wear 268 (2010) 1309-1319.
DOI: 10.1016/j.wear.2010.02.001
Google Scholar
[6]
M.R. Thakare, J.A. Wharton, R.J.K. Wood, C. Menger, Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials, Wear 276/277 (2012) 16-28.
DOI: 10.1016/j.wear.2011.11.008
Google Scholar
[7]
M.F. Buchely, J.C. Gutierrez, L.M. Leon, A. Toro, The effect of microstructure on abrasive wear of hardfacing alloys, Wear 259 (2005) 52-61.
DOI: 10.1016/j.wear.2005.03.002
Google Scholar
[8]
C. Katsich, E. Badisch, Effect of carbide degradation in a Ni-based hardfacing under abrasive and combined impact/abrasive conditions, Surf. Coat. Tech. 206 (2011) 1062-1068.
DOI: 10.1016/j.surfcoat.2011.07.064
Google Scholar
[9]
A. Zikin, I. Hussainova, C. Katsich, E. Badisch, C. Tomastik, Advanced chromium carbide-based hardfacings, Surf. Coat. Tech. 19-20 (2012) 4270-4278.
DOI: 10.1016/j.surfcoat.2012.04.039
Google Scholar
[10]
V.E. Buchanan, P.H. Shipway, D.G. McCartney, Microstructure and abrasive wear of shielded metal arc welding hard facings used in the sugarcane industry, Wear 263 (2007) 99-110.
DOI: 10.1016/j.wear.2006.12.053
Google Scholar
[11]
R.L. Deuis, J.M. Yellup, C. Subramanian, Metal-matrix composite coatings by PTA surfacing, Compos. Sci. Tech. 58 (1998) 299-309.
DOI: 10.1016/s0266-3538(97)00131-0
Google Scholar
[12]
M. Kirchgaßner, E. Badisch, F. Franek, Behaviour of iron-based hardfacing alloys under abrasion and impact, Wear 265 (2008) 772-779.
DOI: 10.1016/j.wear.2008.01.004
Google Scholar
[13]
S. Chatterjee, T.K. Pal, Weld procedural effect on the performance of iron based hardfacing deposits on cast iron substrate, J. Mater. Process. Tech. 173-1 (2006) 61-69.
DOI: 10.1016/j.jmatprotec.2005.10.025
Google Scholar
[14]
J. Degenkolbe, D. Uwer, H. Wegmann, Kennzeichnung von Schweißtemperaturzyklen hinsichtlich ihrer Auswirkung auf die mechanischen Eigenschaften von Schweißverbindungen durch die Abkühlzeit t8/5 und deren Ermittlung, Thyssen Techn. Ber. (1985).
Google Scholar
[15]
V. Frolov, Theoretical Fundamentals of Welding, publishing Bysshaya shkola, Moscow (in russian), (1970).
Google Scholar
[16]
O. Reepmeyer, W. Schuetz, A. Liessem, F. Grimpe, Very heavy wall X-70 DSAW pipe for tension leg application, TMS (The Mineral, Metals & Material Society), (2006).
Google Scholar
[17]
V. Lazic, A. Sedmak, M. Zivkovic, S. Aleksandrovic, R. Cukic, R. Jovicic, I. Ivanovic, Theoretical-experimental determining of cooling time (t8/5) in hardfacing of steels for forging dies, Thermal Sci. 14 (2010) 235-246.
DOI: 10.2298/tsci1001235l
Google Scholar
[18]
K.M. Amin, Nadeem A. Mufti, Investigating cooling curve profile and microstructure of a squeeze cast Al-4%Cu alloy, J. Mat. Proc. Techn. 212 (2012) 1631– 1639.
DOI: 10.1016/j.jmatprotec.2012.02.017
Google Scholar
[19]
J. Hornung, A. Zikin, K. Pichelbauer, M. Kalin, M. Kirchgassner, Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe-Cr-C hardfacings, Mat. Sci. Eng. A 576 (2013) 243-251.
DOI: 10.1016/j.msea.2013.04.029
Google Scholar
[20]
M. Petrica, E. Badisch, T. Peinsitt, Abrasive wear mechanisms and their relation to rock properties, Wear 308 (2013) 86-94.
DOI: 10.1016/j.wear.2013.10.005
Google Scholar
[21]
E. Badisch, M. Kirchgaßner, Influence of welding parameters on microstructure and wear behaviour of a typical NiCrBSi hardfacing alloy reinforced with tungsten carbide, Surf. Coat. Technol. 202 (2008) 6016-6022.
DOI: 10.1016/j.surfcoat.2008.06.185
Google Scholar
[22]
V. Ratia, I. Miettunen, V. -T. Kuokkala, Surfac deformation of steels in impact-abrasion: The effect of sample angle and test configuration, Wear 301 (2013) 94-101.
DOI: 10.1016/j.wear.2013.01.006
Google Scholar
[23]
E. Badisch, M. Kirchgaßner, F. Franek, Continuous impact/abrasion testing (CIAT): influence of testing parameters on wear behaviour, J Eng. Tribology 223-5 (2009) 741-750.
DOI: 10.1243/13506501jet535
Google Scholar
[24]
E. Badisch E., S. Ilo, R. Polak, Multivariable modelling of Impact-abrasion wear rates in metal matrix-carbide composite materials, Tribology Letters 36 (2009) 55-62.
DOI: 10.1007/s11249-009-9458-y
Google Scholar
[25]
R. Polak, S. Ilo, E. Badisch, Relation between inter-particle distance and abrasion in multiphase matrix-carbide materials, Tribology Letters 33 (2009) 29-35.
DOI: 10.1007/s11249-008-9388-0
Google Scholar
[26]
Y. Herrera, I.C. Grigorescu, J. Ramirez, C. Di Rauso, M.H. Staia, Microstructural characterization of vanadium carbide laser clad coatings, Surf. Coat. Tech. 108–109 (1998) 308–311.
DOI: 10.1016/s0257-8972(98)00662-8
Google Scholar
[27]
J. Laurila, A. Milanti, J. Nurminen, M. Kallio, P. Vuoristo, Microstructure and wear behavior of a vanadium carbide reinforced weld coating, Wear 307 (2013) 142-149.
DOI: 10.1016/j.wear.2013.09.003
Google Scholar
[28]
G. Roberts, G. Krauss, R. Kennedy, Tool Steels, fifth edition, ASM Inernational, Materials Park, (1998).
Google Scholar
[29]
E. Fras, M. Kawalec, H.F. Lopez, Solidification microstructures and mechanical properties of high-vanadium Fe-C-V and Fe-C-V-Si alloys, Materials Science and Engineering A 524 (2009) 193–203.
DOI: 10.1016/j.msea.2009.06.039
Google Scholar
[30]
Da-yong Wu, Fu-ren Xiao, Bin Wang, Jia-ling Liu, Bo Liao, Investigation on grain refinement and precipitation strengthening applied in a high speed wire rod containing vanadium, Mat. Sci & Eng. A 592 (2014) 102–110.
DOI: 10.1016/j.msea.2013.10.068
Google Scholar