Potential Controlled Tribological Behavior of Water-Based Ionic Liquids

Article Preview

Abstract:

Increase of energy efficiency, reliability and durability of technical systems in combination with resource conservation using environmentally friendly water-based lubricants would be an overarching goal in all tribological applications. According to this aim the objective of this work is to investigate and identify new water-based lubricants containing ionic liquids (ILs) to reduce friction and wear. Therefore the tribological behavior of different water-based ionic liquid mixtures, compared with a standard water based cooling lubricant emulsion, was studied using a ball-on-disk test. A three electrode setup was used to analyze the influence of different electric potentials. The results show that friction and wear can be improved by using ionic liquid. In addition, the tribological behavior can be strongly influenced by electric potentials. As tribological mechanism the attraction of cations and the formation of a triboactive layer is assumed, due to charging of the surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-256

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Holmberg, P. Andersson und A. Erdemir, Global energy consumption due to friction in passenger cars, Tribology International, Bd. 47, pp.221-234, (2012).

DOI: 10.1016/j.triboint.2011.11.022

Google Scholar

[2] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker und R. D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem., Bd. 3, Nr. 4, pp.156-164, (2001).

DOI: 10.1039/b103275p

Google Scholar

[3] H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan und M. Watanabe, Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation, J. Phys. Chem. B, Bd. 109, Nr. 13, pp.6103-6110, #apr# (2005).

DOI: 10.1021/jp044626d

Google Scholar

[4] R. Hagiwara und Y. Ito, Room temperature ionic liquids of alkylimidazolium cations and fluoroanions, Journal of Fluorine Chemistry, Bd. 105, Nr. 2, pp.221-227, #sep# (2000).

DOI: 10.1016/s0022-1139(99)00267-5

Google Scholar

[5] P. Wasserscheid und T. Welton, Ionic liquids in synthesis, 2. reprint Hrsg., Bd. 2, P. Wasserscheid und T. Welton, Hrsg., Wiley-VCH, 2007, p.724.

DOI: 10.1002/9783527621194

Google Scholar

[6] S. Sowmiah, V. Srinivasadesikan, M. C. Tseng und Y. H. Chu, On the chemical stabilities of ionic liquids, Molecules, Nr. 14(9), pp.3780-3813, (2009).

DOI: 10.3390/molecules14093780

Google Scholar

[7] M. -D. Bermúdez, A. -E. Jiménez, J. Sanes und F. -J. Carrión, Ionic Liquids as Advanced Lubricant Fluids, Molecules, Bd. 14, pp.2888-2908, (2009).

DOI: 10.3390/molecules14082888

Google Scholar

[8] I. Minami, Ionic Liquids in Tribology, Molecules, Bd. 14, pp.2286-2305, (2009).

DOI: 10.3390/molecules14062286

Google Scholar

[9] S. Keskin, D. Kayrak-Talay, U. Akman und Ö. Hortacsu, A review of ionic liquids towards supercritical fluid applications, The Journal of Supercritical Fluids, Bd. 43, pp.150-180, (2007).

DOI: 10.1016/j.supflu.2007.05.013

Google Scholar

[10] A. Kokorin, Ionic liquids: Applications and perspectives, A. Kokorin, Hrsg., InTech, (2011).

Google Scholar

[11] J. Qu, P. Blau, S. Dai, H. Luo und H. Meyer, Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications, Tribology Letters, Bd. 35, Nr. 3, pp.181-189, (2009).

DOI: 10.1007/s11249-009-9447-1

Google Scholar

[12] M. -D. Bermúdez, A. -E. Jiménez und G. Martínez-Nicolás, Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion–corrosion processes, Applied Surface Science, Bd. 253, pp.7295-7302, (2007).

DOI: 10.1016/j.apsusc.2007.03.008

Google Scholar

[13] P. G. Iglesias, M. Bermúdez, F. Carrión und G. Martínez-Nicolás, Friction and wear of aluminium-steel contacts lubricated with ordered fluids-neutral and ionic liquid crystals as oil additives, Wear, Bd. 256, pp.386-392, (2004).

DOI: 10.1016/s0043-1648(03)00442-3

Google Scholar

[14] R. A. Reich, P. A. Stewart, J. Bohaychick und J. A. Urbanski, Base oil properties of ionic liquids, Lubrication Engineering, Bd. 59, p.16–21, (2003).

Google Scholar

[15] B. A. Omotowa, B. S. Phillips, J. S. Zabinski und J. M. Shreeve, Phosphazene-Based Ionic Liquids: Synthesis, Temperature-Dependent Viscosity, and Effect as Additives in Water Lubrication of Silicon Nitride Ceramics, Inorg. Chem., Bd. 43, pp.5466-5471, (2004).

DOI: 10.1021/ic049483o

Google Scholar

[16] B. Phillips und J. Zabinski, Ionic Liquid Lubrication Effects on Ceramics in a Water Environment, Bd. 17, pp.533-541-, (2004).

DOI: 10.1023/b:tril.0000044501.64351.68

Google Scholar

[17] S. P. Benjamin, A. M. Robert, C. T. Paul und S. Z. Jeffrey, Surface Chemistry and Tribological Behavior of Ionic Liquid Boundary Lubrication Additives in Water, in ACS Symposium Series, Bd. 901, American Chemical Society, 2005, pp.244-253.

DOI: 10.1021/bk-2005-0901.ch019

Google Scholar

[18] T. Espinosa, M. Jiménez, J. Sanes, A. -E. Jiménez, M. Iglesias und M. -D. Bermúdez, Ultra-Low Friction with a Protic Ionic Liquid Boundary Film at the Water-Lubricated Sapphire-Stainless Steel Interface, Tribology Letters, Bd. 53, pp.1-9, (2014).

DOI: 10.1007/s11249-013-0238-3

Google Scholar

[19] P. Benaben, Are Ionic Liquids the Future of the Surface Treatment?, Las Vegas, Nevada, (2012).

Google Scholar

[20] K. Seddon, A. Stark, M. -J. Torres, K. Seddon, A. Stark und M. -J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure and Applied Chemistry, Bd. 72, Nr. 12, pp.2275-2287, #jan# (2000).

DOI: 10.1351/pac200072122275

Google Scholar

[21] P. Bonhôte, A. -P. Dias, N. Papageorgiou, K. Kalyanasundaram und M. Graetzel, Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts, Inorg. Chem., Bd. 35, Nr. 5, pp.1168-1178, #jan# (1996).

DOI: 10.1021/ic951325x

Google Scholar

[22] M. G. Freire, L. M. Santos, A. M. Fernandes, J. A. Coutinho und I. M. Marrucho, An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems, Fluid Phase Equilibria, Bd. 261, pp.449-454, (2007).

DOI: 10.1016/j.fluid.2007.07.033

Google Scholar

[23] J. Brennecke und E. E. Maginn, Ionic liquids: Innovative fluids for chemical processing, AIChE J., Bd. 47, pp.2384-2389, (2001).

DOI: 10.1002/aic.690471102

Google Scholar

[24] M. -S. Pei, Z. -Y. Wu, L. -Y. Wang, X. -Z. Wu und X. -T. Tao, Phase Behavior of Liquid Crystals Formed in [C12mim]CI/H2O and [C12mim]CI/Alcohols Systems, Chinese Journal of Chemical Physics, Bd. 22, Nr. 5, pp.453-459, (2009).

DOI: 10.1088/1674-0068/22/05/453-459

Google Scholar

[25] T. Amann, C. Dold und A. Kailer, Rheological characterization of ionic liquids and ionic liquid crystals with promising tribological performance, Soft Matter, Bd. 8, pp.9840-9846, (2012).

DOI: 10.1039/c2sm26030a

Google Scholar

[26] T. Amann, C. Dold und A. Kailer, Tribological behavior of ionic liquids and ionic liquid crystals.

DOI: 10.1039/c2sm26030a

Google Scholar

[27] T. Amann, C. Dold und A. Kailer, Complex fluids in tribology to reduce friction: Mesogenic fluids, ionic liquids and ionic liquid crystals, Tribology International, p. http: /dx. doi. org/10. 1016/j. triboint. 2013. 03. 021i, (2013).

DOI: 10.1016/j.triboint.2013.03.021

Google Scholar

[28] C. Dold, T. Amann und A. Kailer, Influence of structural variations on imidazolium-based ionic liquids, Lubr. Sci., Bd. 25, Nr. 4, pp.251-268, #jun# (2013).

DOI: 10.1002/ls.1219

Google Scholar

[29] C. Dold, T. Amann und A. Kailer, Influence of electric potentials on friction of sliding contacts lubricated by an ionic liquid, Phys. Chem. Chem. Phys., Bd. 17, Nr. 16, pp.10339-10342, (2015).

DOI: 10.1039/c4cp05965d

Google Scholar