[1]
Z. Wang, X. M. Chen, L. Ni, X. Q. Liu, Dielectric abnormities of complex perovskite Ba(Fe1/2Nb1/2)O3 ceramics over broad temperature and frequency range, Appl. Phys. Lett. 90 (2007) 022904. .
DOI: 10.1063/1.2430939
Google Scholar
[2]
I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya, L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb), J. Appl. Phys. 93 (2003) 4130-4136.
DOI: 10.1063/1.1558205
Google Scholar
[3]
U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Impedance study of giant dielectric permittivity in BaFe0. 5Nb0. 5O3 perovskite ceramic, Curr. Appl. Phys. 10 (2010) 21-25.
DOI: 10.1016/j.cap.2009.04.006
Google Scholar
[6]
S. Krohns, P. Lunkenheimer, Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy, J. Appl. Phys. 103 (2008) 084107.
DOI: 10.1063/1.2902374
Google Scholar
[7]
M. Li, D. C. Sinclair, A. R. West, Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: A cautionary tale, J. Appl. Phys. 109 (2011) 084106.
DOI: 10.1063/1.3572256
Google Scholar
[8]
M. Li, A. Feteira, D. C. Sinclair, Relaxor ferroelectric-like high effective permittivity in leaky dielectrics/oxide semiconductors induced by electrode effects: A case study of CuO ceramics, J. Appl. Phys. 105 (2009) 114109.
DOI: 10.1063/1.3143014
Google Scholar
[9]
W. Li, R. W. Schwartz, Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics, Phys. Rev. B. 75 (2007) 012104.
DOI: 10.1103/physrevb.75.012104
Google Scholar
[10]
C. Y. Chung, Y. H. Chang, G. J. Chen, Effects of lanthanum doping on the dielectric properties of Ba(Fe0. 5Nb0. 5)O3 ceramic, J. Appl. Phys. 96 (2004) 6624-6628.
DOI: 10.1063/1.1804243
Google Scholar
[11]
K. F. Liao, Y. S. Chang, Y. L. Chai, Y. Y. Tsai, H. L. Chen, Structure and dielectric properties of sodium-doped Ba(FeNb)0. 5O3, Mat. Sci. Eng. B. 172 (2010) 300-304.
DOI: 10.1016/j.mseb.2010.06.003
Google Scholar
[12]
K. Sanjoom, K. Pengpat, S. Eitssayeam, T. Tunkasiri, G. Rujijanagul, Dielectric properties of Ga2O3-doped barium iron niobate ceramics, Phys. Status Solidi. A 211. No. 8 (2014) 1720–1725.
DOI: 10.1002/pssa.201431289
Google Scholar
[13]
M. Karlsson, A. Matic, C. S. Knee, I. Ahmed, S. G. Eriksson, L. Borjesson, Short-Range Structure of Proton-Conducting Perovskite BaInxZr1-xO3-x/2 (x = 0-0. 75), Chem. Mater. 20 (2008) 3480-3486.
DOI: 10.1021/cm7025448
Google Scholar
[14]
N. S. Druzhinina, Yu. I. Yuzyuk, I. P. Raevski, M. El Marssi, V.V. Laguta, S. I. Raevskaya, Raman Spectra of PbFe0. 5Nb0. 5O3 Multiferroic Single Crystals and Ceramics, Ferroelectrics. 438 (2012) 107-114.
DOI: 10.1080/00150193.2012.747391
Google Scholar
[15]
M. Ganguly, S. Parida, E. Sinha, S.K. Rout, A.K. Simanshu, A. Hussain, I.W. Kim, Structural, dielectric and electrical properties of BaFe0. 5Nb0. 5O3 ceramic prepared by solid-state reaction technique, Mater. Chem. Phys. 131 (2011) 535-539.
DOI: 10.1016/j.matchemphys.2011.10.017
Google Scholar
[16]
T. Phatungthane, G. Rujijanagul, Preparation and dielectric properties of (Sr1-xCax)Fe0. 5Nb0. 5O3; (x=0. 0, 0. 1, 0. 2) ceramics. Ceram. Int. 39 (2013) S41-S45.
DOI: 10.1016/j.ceramint.2012.10.032
Google Scholar
[17]
T. Phatungthane and G. Rujijanagul, Dielectric Properties of (1-x)SrFe1/2Nb1/2O3-xBaZn1/3Ta2/3O3 Ceramics, Electron. Mater. Lett. 9 (2013) 485-488.
DOI: 10.1007/s13391-013-0036-y
Google Scholar
[18]
K. Sanjoom, T. Tunkasiri, K. Pengpat, S. Eitssayeam, G. Rujijanagul, Dielectric properties of strontium iron holmium niobate ceramics, Ceram. Int. 39 (2013) S227-S231.
DOI: 10.1016/j.ceramint.2012.10.067
Google Scholar
[19]
G. Rujijanagul, C. Kruea-In, Electrical Behaviors of (1-x)BZT07-xBNWT Lead Free Solid Solution Binary System, Electron. Mater. Lett. 9 (2013) 455-457.
DOI: 10.1007/s13391-013-0015-3
Google Scholar