Effects of Ga Content on Optical and Scintillation Properties in Ce3+-Doped YGd2(Al,Ga)5O12 Scintillators

Article Preview

Abstract:

The optical and scintillation properties of Ce3+-doped YGd2(Al,Ga)5O12 single crystal scintillators were investigated. The Ce3+ 5d-4f emission was blue-shifted with increasing Ga content due to the decrease of the crystal field strength. Temperature dependence of the photoluminescence decay times was measured and the thermal activation energy for the luminescence quenching was calculated. Light yield (LY) and its dependence on an integration time were measured under γ-ray excitation. The fast component content in the scintillation response increases with increasing Ga content. The YGd2Al2Ga3O12:Ce sample showed a high LY of 38,000 photons/MeV. The decrease of LY value observed for a YGd2Al1Ga4O12:Ce sample is mainly due to the thermal ionization of the 5d1 excited state of the Ce3+ emission center to the conduction band.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 675-676)

Pages:

552-555

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Moszynski, T. Ludziewski, D. Wolski, W. Klamra, L. O. Norlin, Nucl. Instrum. Methods Phys. Res. A 345 (1994) 461.

Google Scholar

[2] M. Nikl, E. Mihokova, J. A. Mares, A. Vedda, M. Martini, K. Nejezchleb, K. Blazek, Phys. Status Solidi B 181 (2000) R10.

DOI: 10.1002/1521-396x(200009)181:1<r10::aid-pssa999910>3.0.co;2-9

Google Scholar

[3] M. Nikl, A. Vedda, M. Fasoli, I. Fontana, V. V. Laguta, E. Mihokova, J. Pejchal, J. Rosa, K. Nejezchleb, Phys. Rev. B 76 (2007) 195121.

DOI: 10.1109/tns.2007.913480

Google Scholar

[4] W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, P. Limsuwan, IEEE Trans. Nucl. Sci. 56 (2009) 3800.

DOI: 10.1109/tns.2009.2033994

Google Scholar

[5] M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, C. D'Ambrosio, Appl. Phys. Lett. 88 (2006) 141916.

DOI: 10.1063/1.2191741

Google Scholar

[6] M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B. P. Uberuaga, D. A. Andersson, K. J. McClellan, C. R. Stanek, Phys. Rev. B 84 (2011) 081102(R).

Google Scholar

[7] Yu. Zorenko, Opt. Spectrosc. 88 (2000) 551.

Google Scholar

[8] K. Kamada, T. Endo, K. Tsutsumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, M. Nikl, Cryst. Growth Des. 11 (2011) 4484.

DOI: 10.1021/cg200694a

Google Scholar

[9] K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutsumi, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Phys. D : Appl. Phys. 44 (2011) 505104.

DOI: 10.1088/0022-3727/44/50/505104

Google Scholar

[10] J. Pejchal, M. Nikl, E. Mihóková, J. A. Mareš, A. Yoshikawa, H. Ogino, K. M. Schillemat, A Krasnikov, A. Vedda, K. Nejezchleb, V. Múčka, J. Phys. D: Appl. Phys. 42 (2009) 055117.

DOI: 10.1088/0022-3727/42/5/055117

Google Scholar

[11] M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt, IEEE Trans. Nucl. Sci. 44 (1997) 1052.

DOI: 10.1109/23.603803

Google Scholar

[12] J. M. Ogiegło, A. Katelnikovas, A. Zych, T. Jüstel, A. Meijerink, C. R. Ronda, J. Phys. Chemistry A 117 (2013) 2479.

Google Scholar

[13] J. Ueda, K. Aishima, S. Tanabe, Opt. Mater. 35 (2013) (1952).

Google Scholar

[14] A. B. Muñoz-García, L. Seijo, Phys. Rev. B 82 (2010) 184118.

Google Scholar

[15] J. M. Ogiegło, A. Zych, T. Jüstel, A. Meijerink, C. R. Ronda, Opt. Mater. 35 (2013) 322.

Google Scholar

[16] P. Prusa, M. Nikl, J. A. Mares, M. Kucera, K. Nitsch, A. Beitlerova, Phys. Status Solidi A 206 (2009) 1494.

DOI: 10.1002/pssa.200825050

Google Scholar