[1]
Jing–Feng Li, Ke Wang at all, (K, Na)NbO3–Based Lead–Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges, J. Am. Ceram. Soc. 96.
DOI: 10.1111/jace.12715
Google Scholar
[12]
(2013) 3677–3696.
Google Scholar
[2]
Xuming Pang, Jinhao Qiu, Kongjun Zhu, Jianzhou Du, (K, Na)NbO3–based lead–free piezoelectric ceramics manufactured by two–step sintering, Ceram. Int. 38 (2012) 2521–2527.
DOI: 10.1016/j.ceramint.2011.11.022
Google Scholar
[3]
Jing–Feng Li, Yuhua Zhen at all, Normal sintering of (K, Na)NbO3–based lead–free piezoelectric ceramics, Ceram. Int. 34 (2008) 783–786.
DOI: 10.1016/j.ceramint.2007.09.025
Google Scholar
[4]
Jigong Hao, Zhijun Xu, Characterization of (K0. 5Na0. 5)NbO3 powders and ceramics prepared by a novel hybrid method of sol–gel and ultrasonic atomization, Mater Design. 31 (2010) 3146–3150.
DOI: 10.1016/j.matdes.2009.12.015
Google Scholar
[5]
Henry Ekene Mgbemere at all, Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics, Ceram Soc. 29 (2009) 1729–1733.
DOI: 10.1016/j.jeurceramsoc.2008.10.012
Google Scholar
[6]
S. Wongsaenmai at all, Crystal structure and ferroelectric properties of Mn–doped (Ka0. 5Na0. 5)0. 935Li0. 065)NbO3 lead–free ceramics, Curr Appl Phys. 12 (2012) 418–421.
DOI: 10.1016/j.cap.2011.07.040
Google Scholar
[7]
Lu Li, Yue–Qiu Gong at all, Low–temperature hydro/solvothermal synthesis of Ta–modified K0. 5Na0. 5NbO3 powders and piezoelectric properties of corresponding ceramics, Mater Design. 33 (2012) 362–366.
DOI: 10.1016/j.matdes.2011.03.023
Google Scholar
[8]
You–Liang Wang at all, Low–temperature sintering and electrical properties of (K, Na)NbO3 based lead–free ceramics with high Curie temperature, Ceram. Int. 38S (2012) S295–S299.
DOI: 10.1016/j.ceramint.2011.04.105
Google Scholar
[9]
U. Flǜckiger, H. Arend, H. Oswald, Synthesis of KNbO3 powder, Am. Ceram. Soc. Bull. 56 (6) (1977) 575–577.
Google Scholar
[10]
R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium niobates, J. Am. Ceram. Soc. 45 (1962) 209–213.
DOI: 10.1111/j.1151-2916.1962.tb11127.x
Google Scholar
[11]
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32 (1976) 751–767.
DOI: 10.1107/s0567739476001551
Google Scholar
[12]
T. Liu at all, Dielectric and piezoelectric properties of Mn–doped (K, Na)0. 96Sr0. 02NbO3 ceramics, Phys. Stat. Sol. 203 (2006) 3861–3867.
Google Scholar
[13]
J.H. Moon at all, Densification behavior and piezoelectric. Properties of MnO2, SiO2–doped Pb(Ni1/3Nb2/3)O3–PbTiO3–PbZrO3 ceramics, J. Mater. Res. 8 (1993) 3184–3191.
DOI: 10.1111/j.1151-2916.1993.tb03825.x
Google Scholar
[14]
Y. Guo, K. Kakimoto, H. Ohsato, (Na0. 5K0. 5)NbO3–LiTaO3 lead–free piezoelectric ceramics, Mater. Lett. 59 (2–3) (2005) 241–244.
DOI: 10.1016/j.matlet.2004.07.057
Google Scholar
[15]
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead–free piezoceramics, Nature. 432 (2004) 84–87.
DOI: 10.1038/nature03028
Google Scholar