Thermoelectric Properties and Power Generation of p–Ca3Co4O9 and n–Sr0.87La0.13TiO3 Thermoelectric Modules

Article Preview

Abstract:

The Ca3Co4O9 (CCO) and Sr0.87La0.13TiO3 (SLTO) are good property of oxide thermoelectric (TE) materials. They synthesized by solid state reaction (SSR) method to study thermoelectric properties and fabrication of thermoelectric module. It was found that, synthesis of CCO shows that Seebeck coefficient, electrical resistivity, thermal conductivity and values are 130 μV K1, 8.31 mΩ cm, 0.82 W m1 K1 and 0.08, respectively at 473 K. The Seebeck coefficient, electrical resistivity, thermal conductivity and ZT values of SLTO are –359 μV K1, 2.9 mΩ m, 18.09 W m1 K1 and 1.13×103, respectively at 473 K. TE modules of CCO and SLTO were fabricated by ultra sonic soldering method. The power generation of TE modules were measured with temperature difference (ΔT) of 10–180 K. The 1 pair and 2 pairs TE modules for a maximum power generation of matching load are 19 k and 30 k, respectively. The maximum output power of 2 pairs TE module is larger than 1 pair TE module about two times.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 675-676)

Pages:

679-682

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Park, G.W. Lee, Fabrication and thermoelectric power of π–shaped Ca3Co4O9/CaMnO3, Energy 60 (2013) 87–93.

DOI: 10.1016/j.energy.2013.07.025

Google Scholar

[2] J.C. Diez, M.A. Torres, Sh. Rasekh, G. Constantinescu, M.A. Madre, A. Sotelo, Enhancement of Ca3Co4O9 thermoelectric properties by Cr for Co substitution, Ceram. Int. 39 (2013) 6051–6056.

DOI: 10.1016/j.ceramint.2013.01.021

Google Scholar

[3] Y.H. Zhun, W.B. Su, J. Liu, Y.C. Zhou, J. Li, X. Zhang, Y. Du, C.L. Wang, Effects of Dy and Yb co–doping on thermoelectric properties of CaMnO3 ceramics, Ceram. Int. 41 (2015) 1535–1539.

DOI: 10.1016/j.ceramint.2014.09.089

Google Scholar

[4] Q. Zhou, B.J. Kennedy, Thermal expansion and structure of orthorhombic CaMnO3, J. Phys. Chem. Solids. 67 (2006) 1595–1598.

DOI: 10.1016/j.jpcs.2006.02.011

Google Scholar

[5] B. Zhan, J. Lan, Y. Liu, Y. Lin1, Y. Shen, C. Nan, High Temperature Thermoelectric Properties of Dy–doped CaMnO3 Ceramics, J. Mater. Sci. Technol. 30(8) (2014) 821–825.

DOI: 10.1016/j.jmst.2014.01.002

Google Scholar

[6] M. Mouyane, B. Itaalit, J. Bernarda, D. Houivet, J.G. Noudem, Flash combustion synthesis of electron doped–CaMnO3, thermoelectric oxides, Powder Technol. 264 (2014) 71–77.

DOI: 10.1016/j.powtec.2014.05.022

Google Scholar

[7] X.Y. Huang, Y. Miyazaki, T. Kajitani, High temperature thermoelectric properties of Ca1–xBixMn1–yVyO3–d (0 £ x = y £ 0. 08), Solid State Commun. 145 (2008) 132–136.

DOI: 10.1016/j.ssc.2007.10.012

Google Scholar