[1]
Tinatin I. Brelidze, Anne E. Carlson, Banumathi Sankaran, and William N. Zagotta, Structure of the carboxy-terminal region of a KCNH channel, Nature. 2012, 481: 530-533.
DOI: 10.1038/nature10735
Google Scholar
[2]
P. R. Ouyang, W. J. Zhang, M. M. Gupta, and W. zhao, Overview of the development of a visual based automated bio-micromanipulation system, Machatronics. 2007, 17: 578-588.
DOI: 10.1016/j.mechatronics.2007.06.002
Google Scholar
[3]
Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications, IEEE/ASME Trans. Mechatron. 2013, 18(3): 981-989.
DOI: 10.1109/tmech.2012.2194301
Google Scholar
[4]
A. A. Ramadan, T. Takubo, Y. Mae, K. Oohara, and T. Arai, Developmental process of a chopstick-like hybrid-structure two-fingered micromanipulator hand for 3-D manipulation of microscopic objects, IEEE Trans. Ind. Electron. 2009, 56(4): 1121-1135.
DOI: 10.1109/tie.2008.2008753
Google Scholar
[5]
H. Tang and Y. Li, Design, analysis and test of a novel 2-DOF nanopositioning system driven by dual-mode, IEEE Trans. Robot. 2013, 29(3): 650-662.
DOI: 10.1109/tro.2013.2248536
Google Scholar
[6]
S. Devasia, E. Eleftheriou, and S. O. Reza Moheimani, A survey of control issues in nanopositioning, IEEE Trans. Control Syst. Technol. 2007, 15(5): 802-822.
DOI: 10.1109/tcst.2007.903345
Google Scholar
[7]
H. Tang, Y. Li, and J. Huang, Design and Analysis of a Parallel XY Micromanipulator for Micro/Nano Manipulation Driven by Dual- Mode, Journal Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science. 226(12): 3043-3057.
DOI: 10.1177/0954406212442272
Google Scholar
[8]
H. Tang and Y. Li, Feedforward Nonlinear PID Control of a Novel Nanomanipulator Using Preisach Hysteresis Compensator, Robotics and Computer-Integrated Manufacturing. 2015, 34: 124-132.
DOI: 10.1016/j.rcim.2014.11.006
Google Scholar
[9]
P. R. Ouyang, W. J. Zhang, and M. M. Gupta, Design of a new compliant mechanical amplifier, in Proc. of ASME Int. Desi. Eng. Tech. Conf. & Comp. and Info. in Engi. Conf., Sept 24-28, 2012, Long Beach, California, USA, pp.1-10.
Google Scholar
[10]
M. -Y. Chen, H. -H. Huang, and S. -K. Hung, A new design of a submicropositioner utilizing electromagnetic actuators and flexure mechanism, IEEE Trans. Ind. Electron. 2010, 57(1): 96-106.
DOI: 10.1109/tie.2009.2033091
Google Scholar
[11]
M. Hagiwara, T. Kawahara, Y. Yamanishi, T. Masuda, L. Feng, and F. Arai, On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations, Lab on a chip. 2011, 11(12): 2049- (2054).
DOI: 10.1039/c1lc20164f
Google Scholar
[12]
W. Dong, J. Tang, and Y. ElDeeb, Design of a linear-motion dual-stage actuation system for precision control, Smart Mater. Struct. 2009, 18(9): 095035-1-095035-11.
DOI: 10.1088/0964-1726/18/9/095035
Google Scholar
[13]
D. Kang, K. Kim, D. Kim, J. Shim, D. -G. Gweon, and J. Jeong, Optimal design of high precision XY-scanner with nanometer-level resolution and millimeter-level working range, Mechatronics. 2009, 19(4): 562-570.
DOI: 10.1016/j.mechatronics.2009.01.002
Google Scholar
[14]
Y. L. Zhang, Y. Zhang, C. H. Ru, and Y. Sun, A load-lock-compatible nanomanipulation system for scanning electron, IEEE/ASME Trans. Mechatron. 2013, 18(1): 230-237.
DOI: 10.1109/tmech.2011.2166162
Google Scholar
[15]
H. Tang and Y. Li, A new flexure-based Yθ nanomanipulator with nanometer scale positioning resolution and millimeter range workspace, IEEE/ASME Trans. Mechatron. 2015, 20(3): 1320- 1330.
DOI: 10.1109/tmech.2014.2342752
Google Scholar
[16]
H. Tang and Y. Li, Development and active disturbance rejection control of a compliant micro/nano positioning piezo-stage with dual- mode, IEEE Trans. Ind. Electron. 2014, 61(3): 1475-1492.
DOI: 10.1109/tie.2013.2258305
Google Scholar