From Shape to Feature - A Novel Structural Design Idea for Dynamic Feature Adjustable Micro Motion Stages Based on Tension Stiffening

Article Preview

Abstract:

Guidance mechanism such as fast tool servo (FTS) is widely used in precision machining, in the current design method, either the analytic solution or topological optimization, the dynamic feature, namely the stiffness, inertial and frequency, are subjected to the shape and sizing of the designed structure, especially sensitive to the geometric feature of flexure hinge, which caused high machining precision and high cost. In this proceeding, a novel structural design idea for guidance mechanism type micro motion stages based on tension stiffening which allow the dynamic feature adjustable is presented. Firstly, the design of micro motion stages is reviewed on both analytic and topological optimization, and the advantage of the two kinds of commonly used flexure type, the notch type and leaf spring type, are compared, and the latter is chosen as an idea type for guidance mechanism for its uniform deformation and none stress concentration. Secondly, tension stiffening using in the stringed instruments is described, in which the length, tension and linear density is discussed to change the pitch (vibration frequency and amplitude) of the stringed instruments. Finally, a novel structural design idea origin from stringed instruments is discussed, with the assumption that the leaf spring type flexure hinge are symmetrical layout on both sides of the micro motion stage, the stiffness and frequency change rate are also discussed. A numerical method is used to show the efficiency of the presented method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-54

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. PAROS, L. WEISBORD. How to design flexure hinges [M]. Machine Design, (1994).

Google Scholar

[2] Liu Qiang, Zhou Xiaoqin. A Flexure-based Long-stroke Fast Tool Servo for Diamond Turning[J]. The International Journal of Advanced Manufacturing Technology, 2012(4): 59(9-12), 859-867.

DOI: 10.1007/s00170-011-3556-3

Google Scholar

[3] Zhu Wen-Hong, B. Jun Martin, etc. A Fast Tool Servo Design for Precision Turning of Shafts on Conventional CNC Lathes[J]. International Journal of Machine Tools & Manufacture, (2001): 41, 953-965.

DOI: 10.1016/s0890-6955(00)00118-8

Google Scholar

[4] YANG Zhijun, WANG Meng, BAI Youdun et. al. A New Design Method of Dynamic Characteristics Adjustable Micro Motion Stage Based on Tension Stiffening, Journal of mechanical engineering, accepted.

DOI: 10.3901/jme.2015.23.153

Google Scholar

[5] Zhu BenLiang, Zhang XianMin, etc. Design of single-axis flexure hinges using continuum topology optimization method[J]. Technological Sciences, 2014(3): 57(3), 560-567.

DOI: 10.1007/s11431-013-5446-4

Google Scholar