Structural Changes of Titanium Dioxide Thin Films Deposited by Reactive Magnetron Sputtering through Nitrogen Incorporation

Article Preview

Abstract:

This paper presents the results of the studies of the structure and chemical composition of nitrogen-doped titanium dioxide thin films obtained by reactive magnetron sputtering deposition. The XRD data show the changes of the structure and phase composition of titanium dioxide thin films due to the nitrogen doping. The change of the films structure increases with the growth of the nitrogen content. The reduction of crystallites size takes place at the increase of the nitrogen concentration. Chemical bonds present in the films were examined by FTIR spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

383-388

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sarra-Bournet, B. Haberl, C. Charles, R. Boswel, Characterization of nanocrystalline nitrogen-containing titanium oxide obtained by N2/O2/Ar low-field helicon plasma sputtering, J. Phys. D: Appl. Phys. 44 (2012) 1-8.

DOI: 10.1088/0022-3727/44/45/455202

Google Scholar

[2] M.E. Konischev, O.S. Kuzmin, A.A. Pustovalova, N.S. Morozova, K.E. Evdokimov et al., Structure and properties of Ti-O-N coatings produced by reactive magnetron sputtering, Russ. Phys. J. 56 (2014) 1144-1149.

DOI: 10.1007/s11182-014-0154-5

Google Scholar

[3] Z.F. Yin, L. Wu, H.G. Yang and Y.H. Su, Recent progress in biomedical applications of titanium dioxide, Phys. Chem. Chem. Phys. 15 (2013) 4844-4858.

DOI: 10.1039/c3cp43938k

Google Scholar

[4] N. Huang, P. Yang, Y.X. Leng, J.Y. Chen, H. Sun, J. Wang, G.J. Wang, P.D. Ding, T.F. Xi, Y. Leng, Hemocompatibility of titanium oxide films, Biomaterials. 24 (2003) 2177-2187.

DOI: 10.1016/s0142-9612(03)00046-2

Google Scholar

[5] F. López-Huerta, B. Cervantes, O. González, J. Hernández-Torres, L. García-González, R. Vega, A. L. Herrera-May, E. Soto, Biocompatibility and surface properties of TiO2 thin films deposited by dc magnetron sputtering, Materials. 7 (2014).

DOI: 10.3390/ma7064105

Google Scholar

[6] I. Tsyganov, M. Maitz, E. Wieser, Blood compatibility of titanium-based coatings prepared by metal plasma immersion ion implantation and deposotion, Appl. Surf. Sci. 235 (2004) 156-63.

DOI: 10.1016/j.apsusc.2004.05.134

Google Scholar

[7] S. Forberg, Ceramic containers for spent nuclear fuel: on the corrosion resistance of rutile, J. Adv. Ceram. 20 (1986) 321-327.

Google Scholar

[8] L.F. Arias, A. Kleiman, E. Heredia, A. Márquez, Rutile titanium dioxide films deposited with a vacuum arc at different temperatures, Journal of Physics: Conference Series. 370 (2012) 1-5.

DOI: 10.1088/1742-6596/370/1/012027

Google Scholar

[9] J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphind, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants, J. Hazard. Mater. 168 (2009) 253-261.

DOI: 10.1016/j.jhazmat.2009.02.036

Google Scholar

[10] R. Gago, A. Redondo-Cubero, M. Vinnichenko, J. Lehmann, F. Munnik, F.J. Palomares, Spectroscopic evidence of NOx formation and band-gap narrowing in N-doped TiO2 films grown by pulsed magnetron sputtering, Mater. Chem. Phys. 136 (2012) 729-736.

DOI: 10.1016/j.matchemphys.2012.07.049

Google Scholar

[11] R. Pandian, G. Natarajan, S. Rajagopalan, M. Kamruddin, A. Tyagi, On the phase formation of titanium oxide thin films deposited by reactive dc magnetron sputtering: influence of oxygen partial pressure and nitrogen doping, Appl. Phys. A. 116 (2014).

DOI: 10.1007/s00339-014-8351-1

Google Scholar

[12] V. Babu, A. Nair, Z. Peining, S. Ramakrishna, Synthesis and characterization of rice grains like nitrogen-doped TiO2 nanostructures by electrospinning-photocatalysis, Mater. Lett. 65 (2011) 3064-3068.

DOI: 10.1016/j.matlet.2011.06.035

Google Scholar

[13] J. Li, Y. Wang, L. Wang, Structure and properties of nitrogen incorporated in TiO2 nanotubes array, Mater. Res. Express. 1 (2014) 1-10.

Google Scholar

[14] Information on http: /webbook. nist. gov/chemistry.

Google Scholar

[15] G.V. Arysheva, N.M. Ivanova, M.E. Konishchev, A.A. Pustovalova, V.S. Sypchenko, Analysis of magnetron-deposited titanium oxynitride coatings by scanning electron microscopy and raman scattering, Adv. Mater. Res. 1084 (2015) 3-6.

DOI: 10.4028/www.scientific.net/amr.1084.3

Google Scholar

[16] R.S. Vemuri, M. Noor-A-Alam, S.K. Gullapalli et. al., Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films, Thin Solid Films. 520 (2011) 1446-1450.

DOI: 10.1016/j.tsf.2011.08.080

Google Scholar

[17] G.V. Arysheva, N.M. Ivanova, A.A. Pustovalova, M.E. Konishchev, Surface morphology of titanium oxide and oxynitride coatings deposited by reactive magnetron sputtering, Adv. Mater. Res. 1085 (2015) 134-138.

DOI: 10.4028/www.scientific.net/amr.1085.134

Google Scholar

[18] K. Liu, L. Zhu, T. Jiang, Y. Sun, H. Li, D. Wang, Mesoporous TiO2 micro-nanometer composite structure: synthesis, optoelectric properties, and photocatalytic selectivity, Int. J. Photoenergy. (2012) 1-9.

DOI: 10.1155/2012/849062

Google Scholar

[19] G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, Preparation of highly visible-light active N-doped TiO2 photocatalyst, J. Mater. Chem. 20 (2010) 5301-5309.

DOI: 10.1039/c0jm00376j

Google Scholar