Biological Detoxification of Lignocellulosic Hydrolysates for Improved Biobutanol Production

Article Preview

Abstract:

The fuel butanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as carboxylic acids, phenolic compounds and furans formed during hydrolysis. The main objective of this work is to evaluate the biological detoxification method of lignocellulosic hydrolysates when two forms of specially adapted activated sludge are used for improved biobutanol production. We investigated the removal of toxic substances from an enzymatic hydrolysate of miscanthus cellulose and an acid hydrolysate of spruce by specially adapted activated sludge of the urban wastewater treatment plants and by activated sludge of the pig farm wastewater treatment plants. Activated sludge treatment removed 98 % and 99 % of 5-hydroxymethylfurfural (5-HMF) and furfural from the hydrolysate respectively. Fermentation of treated hydrolysates by Clostridium acetobutylicum ATCC 824 was successful. Control experiments on fermentation of untreated hydrolysates showed a complete absence of fermentation

You might also be interested in these eBooks

Info:

Periodical:

Pages:

525-530

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. I Sharkov, S.A. Sapotnitsky, O.A. Dmitrieva, I.F. Tumanov, Technology of Hydrolytic Manufactures, Wood industry, Russia, Moscow, (1973).

Google Scholar

[2] D.H. Cho, Y.J. Lee, Y. Um, B. Sang, Y.H. Kim, Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium Beijerinckii, Appl. Microbiol. Biot. 83 (2009) 1035–1043.

DOI: 10.1007/s00253-009-1925-8

Google Scholar

[3] Z. Sun, S. Liu, Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia Acetobutylicum ATCC 824, Biomass. 30 (2010) 1–9.

DOI: 10.1016/j.biombioe.2010.07.026

Google Scholar

[4] L.J. Jönsson, E. Palmqvist, N. -O. Nilvebrant, B. Hahn-Hägerdal, Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor, Appl. Microbiol. Biot. 49 (1998) 691–697.

DOI: 10.1007/s002530051233

Google Scholar

[5] S.I. Mussatto, I.C. Roberto, Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review, Bioresource Technol. 93 (2004) 1–10.

DOI: 10.1016/j.biortech.2003.10.005

Google Scholar

[6] E. Palmqvist, B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification, Bioresource Technol. 74 (2000) 17–24.

DOI: 10.1016/s0960-8524(99)00160-1

Google Scholar

[7] B.G. Fonseca, R. O. Moutta, F.O. Ferraz, E.R. Vieira, A.S. Nogueira, B.F. Baratella, L.C. Rodrigues, Z. Hou-Rui, S.S. Silva, Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia Occidentalis CCTCC M 206097 yeast, J. Ind. Microbiol. (2010).

DOI: 10.1007/s10295-010-0845-z

Google Scholar

[8] M.J. López, N.N. Nichols, B.S. Dien, J. Moreno, R. J. Bothast, Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates, Appl. Microbiol. Biot. 64 (2004) 125–131.

DOI: 10.1007/s00253-003-1401-9

Google Scholar

[9] K. Ounine, H. Petitdemange, G. Raval, R. Gay, Acetone-butanol production from pentoses by Clostridium Acetobutylicum, Biotechnol. Lett. 5(9) (1983) 605–610.

DOI: 10.1007/bf00130841

Google Scholar

[10] A. Bassam, H.P. Blaschek, Regulation and localization of amylolytic enzymes in Clostridium Acetobutylicum ATCC 824, Appl. Environ. Microb. 56(8) (1990) 2559–2561.

DOI: 10.1128/aem.56.8.2559-2561.1990

Google Scholar

[11] C. Croux, B. Canard, G. Goma, Autolysis of Clostridium Acetobutylicum ATCC 824, J. Gen. Microbiol. 138 (1992) 861–869.

DOI: 10.1099/00221287-138-5-861

Google Scholar