Optimization of Polymerase Chain Reaction for Inter Simple Sequence Repeat Technique for Four Species of Plants

Article Preview

Abstract:

Polymerase chain reaction optimization for inter simple sequence repeat primers is a key factor to obtain accurate and reproducible results for gene mapping, studying the genetic structure of populations, plant passporting, phylogenetic analysis. Changing temperature conditions, the amount of amplification cycles and concentration of reaction mixture components is allowed to vary the number of bands obtained by this method. This article is result of preliminary research of method selection for molecular analysis. It is aimed to show how to adjust the profile of inter simple sequence repeat fragments by polymerase chain reaction for four model species Stipa lessingiana, Poa intricata, Equisetum fluviatile and Pteridium aquilinum. The working concentrations of magnesium chloride for primer ((СТС)3GC) and ((АС)8YG) were 2.5 mM for 0.63 units of Taq DNA polymerase and for primer ((СА)6GG) it was 4.5 mM for 1.25 units. Sharply defined banding was observed from the minimal amount of DNA 5 ng per reaction, with primer concentration from 10 to 80 pmol and dNTPs concentration 0.2 mM. Optimal hybridization temperatures were 51.9 °C for primers ((АС)8YG), ((СА)6GG) and 50.0 °C for ((СТС)3GC). The best imaging results were obtained when setting up electrophoresis in 1.9% agarose gel

You might also be interested in these eBooks

Info:

Periodical:

Pages:

511-518

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Meyer, T.G. Mitchell, E.Z. Freedman, R. Vilgalys, Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans, J. Clin. Microbiol. 31 (1993).

DOI: 10.1128/jcm.31.9.2274-2280.1993

Google Scholar

[2] E. Zietkiewicz, A. Rafalski, D. Labuda, Genome fingerprinting by simple sequence repeat (SSR) – anchored polymerase chain reaction amplification, Genomics. 20 (1994) 176-183.

DOI: 10.1006/geno.1994.1151

Google Scholar

[3] J.G.K. Williams, A.R. Kubelik, K.J. Livak, J.A. Rafalski, S.V. Tingey, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18 (1990) 6531-6535.

DOI: 10.1093/nar/18.22.6531

Google Scholar

[4] D. Tautz, Hypervariability of simple sequences as a general source for polymorphic DNA markers, Nucleic Acids Res. 17 (1989) 6463-6471.

DOI: 10.1093/nar/17.16.6463

Google Scholar

[5] P. Vos, R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, M. Zabeau, AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res. 11 (1995) 4407-4414.

DOI: 10.1093/nar/23.21.4407

Google Scholar

[6] M.Z. Galvan, B. Bornet, P.A. Balatti, M. Branchard, Inter simple sequence repeat (ISSR) markers as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L. ), Euphytica. 132 (2003) 297-301.

DOI: 10.1023/a:1025032622411

Google Scholar

[7] M. Korbin, A. Kuras, E. Urawicz, Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR PCR, Cell Mol. Biol. Lett. 7, 2B (2002) 785-794.

Google Scholar

[8] W.P. Yang, A.C. Oliveira, I. Godwin, K. Schertz, J.L. Bennetzen, Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums, Crop Sci. 36 (1996) 1669-1676.

DOI: 10.2135/cropsci1996.0011183x003600060042x

Google Scholar

[9] S. Cichorz, M. Goska, A. Litwiniec, Miscanthus: genetic diversity and genotype identification using ISSR and RAPD marker, Mol. Biotechnol. 56, 10 (2014) 911-924.

DOI: 10.1007/s12033-014-9770-0

Google Scholar

[10] D. Metzgar, J. Bytof, C. Wills, Selection against frameshift mutations limits microsatellite expansion in coding DNA, Genome Res. 10 (2000) 72-80.

Google Scholar

[11] Y. Wang, M. Chen, H. Wang, J. Wang, D. Bao, Microsatellites in the Genome of the Edible Mushroom, Volvariella volvacea, BioMed Res. Int., 2014, Available at: http: /www. ncbi. nlm. nih. gov/pmc/articles/PMC3915763/pdf/BMRI2014-281912. pdf.

DOI: 10.1155/2014/281912

Google Scholar

[12] J. Huang, Y. Li, L. Du, B. Yang, F. Shen, H. Zhang, Z. Zhang, X. Zhang, B. Yue, Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system, BMC Genomics, 2015, Available at: http: /www. biomedcentral. com/content/pdf/s12864-015-1268-z. pdf.

DOI: 10.1186/s12864-015-1268-z

Google Scholar

[13] M. A. Latif, M. M. Rahman, M. E. Ali, S. Ashkani, M.Y. Rafii, Inheritance studies of SSR and ISSR molecular markers and phylogenetic relationship of rice genotypes resistant to tungro virus, CR. Biol. 336, 3 (2013) 125-133.

DOI: 10.1016/j.crvi.2012.12.002

Google Scholar

[14] T. J. Givnish, G. J. Bean, M. Ames, S. P. Lyon, K. J. Sytsma, Phylogeny, floral evolution, and inter-island dispersal in Hawaiian Clermontia (Campanulaceae) based on ISSR variation and plastid spacer sequences, PLoS One, 2013, Available at: http: /www. ncbi. nlm. nih. gov/pmc/articles/PMC3642221/pdf/pone. 0062566. pdf.

DOI: 10.1371/journal.pone.0062566

Google Scholar

[15] L. Zande, R. Bijlsma, Limitation of the RAPD technique in phylogeny reconstruction in Drosophila, J. Evolution. Biol. 8 (1995) 645-656.

DOI: 10.1046/j.1420-9101.1995.8050645.x

Google Scholar

[16] R. Kalendar, T. Grob, M. Regina, A. Suoniem, A. Schulman, IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques, Theor. Appl. Genet. 98 (1999) 704-711.

DOI: 10.1007/s001220051124

Google Scholar

[17] D.L. Hyndman, M. Mitsuhashi, PCR primer design, Methods Mol. Biol. 226 (2003) 81-88.

Google Scholar

[18] K.H. Roux, Optimization and troubleshooting in PCR, PCR Meth. Appl. 4 (1995) 185-194.

Google Scholar