Obtaining of 186Re for Nuclear Medicine Using 13 MeV Deuterons

Article Preview

Abstract:

Results of obtaining of 186Re for nuclear medicine using 13 MeV deuterons were presented. Cross section and yield of 186W(d,2n)186Re reaction were experimentally measured in the deuterons energy range from the threshold up to 13 MeV. The total yield of 186Re in the energy range 12.5/6.43 MeV from natural tungsten was measured as (2.3 ± 0.15) MBq/(uA·h). The yield of the 186Re from enriched 186W for deuteron energy 12.5 MeV was evaluated as (8.2 ± 0.13)MBq/(uA·h). Possibility of 186Re obtaining in sufficient quantities for a radiopharmaceuticals synthesis was established. On the basis of data on the yield 186Re it is confidently expected that using of Tomsk Polytechnic University cyclotron can produce enough amount of 186Re for using in nuclear medicine

You might also be interested in these eBooks

Info:

Periodical:

Pages:

500-505

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. T. Simnad, Nuclear irradiation and radioisotopes in metal research, Appl. Radiat. Isotopes. 1, 3 (1956) 145–171.

Google Scholar

[2] L. Baranyai, Industrial Application of Radioisotopes, Nucl. and Radiochem. 11 (2012) 319–350.

Google Scholar

[3] U. Wahl, Materials science and biophysics applications at the ISOLDE radioactive ion beam facility, Nucl. Instrum. Meth. B. 269, 24 (2011) 3014–3020.

DOI: 10.1016/j.nimb.2011.04.082

Google Scholar

[4] V. Yu. Baranov, Isotopes: properties, production, application, FIZMATLIT, Moscow, (2005).

Google Scholar

[5] F. Tarkanyi, A. Hermanne, S. Takacs, F. Ditroi, F. Kovalev, A.V. Ignatyuk, New measurement and evaluation of the excitation function of the 186W(p, n) nuclear reaction for production of the therapeutic radioisotope 186Re, Nucl. Instrum. Meth. 264, 2 (2007).

DOI: 10.1016/j.nimb.2007.09.026

Google Scholar

[6] V. Richards, S. Lapi, Evaluation of new target materials for cyclotron production of 186Re and 99mTc, Nucl. Med. and Biol. 41, 7 (2014) 647.

DOI: 10.1016/j.nucmedbio.2014.05.111

Google Scholar

[7] E. A. Monaco III, Z. Tempel, A. Niranjan, L. D. Lunsford, Intracavitary Therapy: Radioisotopes 32P, 90Y, and 186Re, Craniopharyngiomas, 24 (2015) 391–403.

DOI: 10.1016/b978-0-12-416706-3.00024-6

Google Scholar

[8] K. Hashimoto, Y. Nagai, 8. 14 – Radionuclide Production, Compr. Biomed. Phys. 8, (2014) 219–227.

Google Scholar

[9] W. Jia, G. J. Ehrhardt, Production of the 186Re, 188Re and other radionuclides via inorganic szilard-chalmera process, U.S. Patent 6, 222, 896. (2001).

Google Scholar

[10] G. J. Ehrhardt, A. R. Ketring, L. M. Ayers, Reactor-produced radionuclide's at the University of Missouri Research Reactor, Appl. Radiat. Isotopes. 49, 4 (1998) 295–297.

DOI: 10.1016/s0969-8043(97)00038-9

Google Scholar

[11] M.L. Bonardi, F. Groppi,S. Manenti,E. Persico,L. Gini, Production study of high specific activity NCA 186gRe by proton and deuteron cyclotron irradiation, Appl. Radiat. Isotopes. 68, 9 (2010) 1595–1601.

DOI: 10.1016/j.apradiso.2010.03.014

Google Scholar

[12] V. N. Richards, N. Rath, S. E. Lapi, Production and Separation of 186gRe from proton bombardment of 186WC, Nucl. Med. and Biol. 42, 6 (2015) 530–535.

DOI: 10.1016/j.nucmedbio.2015.03.001

Google Scholar

[13] N.S. Ishioka, S. Watanabe, A. Osa, M. Koizumi, H. Matsuoka,T. Sekine, Excitation functions of rhenium isotopes on the natW(d, xn) reactions and production of No-carrier-added 186Re, J. of Nucl. Sci. and Technol. 39, 2 (2002) 1334-1337.

DOI: 10.1080/00223131.2002.10875351

Google Scholar

[14] Recommended cross sections for 186W(d, 2n)186Re reaction, International Atomic Energy Agency (IAEA), Information on https: /www-nds. iaea. org/radionuclides/w86d6re0.

Google Scholar

[15] Recommended cross sections for natTi(d, x)48V reaction, International Atomic Energy Agency (IAEA), Information on: https: /www-nds. iaea. org/medical/tid48v0.

Google Scholar

[16] R. Ripan, I. Chetyanu, Inorganic chemistry. Chemistry of metals, Mir, Moscow, (1972).

Google Scholar

[17] О.F. Nemets, Yu.F. Hoffmann, Handbook on Nuclear Physics, Naukova Dumka, Kiev (1975).

Google Scholar

[18] A. Guertin, C. Duchemin, F. Haddad, N. Michelb, V. Métiviera, Measurements of 186Re production cross-section induced by deuterons on natW target at ARRONAX facility, Nucl. Med. and Biol. 41, Suppl. (2014) e16–e18.

DOI: 10.1016/j.nucmedbio.2013.11.003

Google Scholar

[19] T. Zhenlan, Z. Fuying, Q. Huiyuan, W. Gongqing, Excitation functions for W-182-186 (d, 2n)Re-182-186 and W-186(d, p)W-187 reactions, J. of Nucl. Sci. and Technol. 2, 3 (1981) 242.

Google Scholar

[20] F.W. Pement, R.L. Wolke, Compound-statistical features of deuteron-induced reactions. II. The compound nucleus and stripping-evaporation mechanisms in (d, 2n) reactions, Nucl. Phys. 2, 86 (1966) 429–442.

DOI: 10.1016/0029-5582(66)90550-5

Google Scholar

[21] M. Hussain, S. Sudar, M.N. Aslam, R. Ahmad, A.A. Malik, S.M. Qaim, Evaluation of charged particle induced reaction cross-section data for production of the important therapeutic radionuclide 186Re, Radiochim. Acta. 98 (2010) 385.

DOI: 10.1524/ract.2010.1733

Google Scholar

[22] S.J. Nassiff, H. Munzel. Cross-sections for the reactions 66Zn(d, n)67Ga, 52Cr(d, 2n)52GMn and 186W(d, 2n)186Re, Radiochim. Acta. 19, 3 (1973) 97.

Google Scholar

[23] C. Duchemina, A. Guertin, F. Haddad, N. Michel, V. Métivier, Cross section measurements of deuteron induced nuclear reactions on natural tungsten up to 34 MeV, Appl. Radiati. and Isotopes. 97 (2015) 52–58.

DOI: 10.1016/j.apradiso.2014.12.011

Google Scholar

[24] I.E. Alekseev, V.V. Lazarev, Cyclotron Production and Radiochemical Isolation of the Therapeutical Radionuclide 186Re, Radiochemistry, 48, 5 (2006) 497-500.

DOI: 10.1134/s1066362206050171

Google Scholar