[1]
E. Golubchik, M. Polyakova, A. Gulin, Adaptive approach to quality management in combined methods of material processing, Applied Mechanics and Materials. 656 (2014) 497 - 506.
DOI: 10.4028/www.scientific.net/amm.656.497
Google Scholar
[2]
A. Korchunov, M. Chukin, A. Lysenin, Methodology of developing mathematical models with fuzzy logic elements for quality indices control, Applied Mechanics and Materials. 436 (2013) 374-381.
DOI: 10.4028/www.scientific.net/amm.436.374
Google Scholar
[3]
M. Polyakova, A. Korchunov, Methodology of developing mathematical models for quality indices control, Applied Mechanics and Materials. 598 (2014) 643-646.
DOI: 10.4028/www.scientific.net/amm.598.643
Google Scholar
[4]
Y.T. Zhu, T.G. Langdon, Fundamentals of Nanostructured Materials by Severe Plastic Deformation, JOM. 10 (2004) 58-63.
DOI: 10.1007/s11837-004-0294-0
Google Scholar
[5]
Lowe, C. Terry, R.Z. Valiev, Investigations and applications of severe plastic deformation. NATO science series, Partnership sub-series 3, High technology. Springer, 2000. 394 p.
Google Scholar
[6]
Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications, edited by S.H. Whang. Polytechnic Institute of NYU, USAWoodhead Publishing Series in Metals and Surface Engineering. 40 (2011). 840 p.
Google Scholar
[7]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[8]
S. Suwas, A. Bhowmik, S. Biswas, Ultra-fine Grain Materials by Severe Plastic Deformation: Application to Steels. In Proc. International Conference on Microstructure and Texture in Steels and Other Materials: 5. – 7. 2. 2008. Jamshedpur, India. London: Springer-Verlag London Ltd. (2009).
DOI: 10.1007/978-1-84882-454-6_19
Google Scholar
[9]
Umemoto, M. Nanocrystallization of Steels by Severe Plastic Deformation, Special Issue on Nano-Hetero Structures in Advanced Metallic Materials. Materials Transactions. 44 (2003) 1900-(1911).
DOI: 10.2320/matertrans.44.1900
Google Scholar
[10]
M. Polyakova, A. Gulin, D. Constantinov, Investigation of microstructure and mechanical properties of carbon steel wire after continuous methods of deformation nanostructuring, Applied Mechanics and Materials 436 (2013) 114-120.
DOI: 10.4028/www.scientific.net/amm.436.114
Google Scholar
[11]
A. Korchunov, M. Polyakova, A. Gulin, D. Konstantinov, Technological inherited connections in continuous method of deformational nanostructuring Applied Mechanics and Materials. 555 (2014) 401-405.
DOI: 10.4028/www.scientific.net/amm.555.401
Google Scholar
[12]
A. Gulin, A. Korchunov, M. Polyakova, Development and performance evaluation of continuous deformation nanostructuring method of high carbon steel wire. NANOCON-2012. Ostrava: TANGER (2012) 137–142.
Google Scholar
[13]
M. Chukin, M. Polyakova, E. Golubchik, V. Rudakov, S. Noskov, A. Gulin, RU Patent 2, 467, 816. (2012).
Google Scholar
[14]
M. Polyakova, M. Chukin, E. Golubchik, A. Gulin, RU Patent 130525 (2013).
Google Scholar